Math, asked by harshayush2001, 9 months ago

prove that :. (sin∅)/ ( sec∅+ tan∅-1) +. ( cos∅) /( cosec∅+ cot∅-1) = 1​

Answers

Answered by Anonymous
4

Answer:

LHS:

\\\\\\\tt \dfrac{\sin \: \theta}{ \sec\theta +  \tan\theta - 1 }  +  \dfrac{ \cos\theta}{\cosec\theta + \cot\theta - 1}\\\\

\tt\dfrac{\sin\theta}{\sec\theta + \tan\theta - ( {\sec}^{2}\theta  - {\tan}^{2}\theta) }  +  \dfrac{\cos\theta}{\cosec\theta + \cot\theta - ( {\cosec}^{2}\theta  -   {\cot}^{2}\theta) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\ \tt  \dfrac{\sin\theta}{\sec\theta + \tan\theta -( ( {\sec}\theta +   \tan\theta)(\sec \theta - \tan\theta)) } +  \dfrac{\cos\theta}{\cosec\theta + \cot\theta -( (\cosec\theta  + \cot\theta) (\cosec\theta - \cot\theta))}\\\\

 \tt\dfrac{\sin\theta}{(\sec\theta + \tan\theta )(1 - (\sec\theta  - \tan\theta)) } +  \dfrac{\cos\theta}{(\cosec\theta + \cot\theta)(1 -(\cosec\theta - \cot\theta)) } \\\\ \tt\dfrac{\sin\theta}{(\sec\theta + \tan\theta )(1 - \sec\theta +  \tan\theta) } +  \dfrac{\cos\theta}{(\cosec\theta + \cot\theta)(1   - \cosec\theta  +  \cot\theta) } \\\\

Now converting every term in sin and cos

\\\\\tt\dfrac{\sin\theta}{( \dfrac{1}{\cos \theta} + \dfrac{\sin\theta}{\cos \theta })(1 -\dfrac{1}{\cos\theta}   + \dfrac{\sin\theta}{\cos\theta}) } +  \dfrac{\cos\theta}{( \dfrac{1}{\sin\theta} +  \dfrac{\cos\theta}{\sin\theta})(1 - \dfrac{1}{\sin\theta } +  \dfrac{\cos\theta}{\sin\theta}) }\\\\\tt\dfrac{\sin\theta}{( \dfrac{1 + \sin\theta}{\cos\theta} )( \dfrac{\cos\theta - 1 + \sin\theta}{\cos\theta} ) } +  \dfrac{\cos\theta}{( \dfrac{1 + \cos\theta}{\sin\theta} )( \dfrac{\sin\theta - 1 + \cos\theta}{\sin\theta} ) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\\\

\tt\dfrac{\sin\theta {\cos}^{2}\theta }{(1 + \sin\theta)(\cos\theta - 1 + \sin\theta) } +  \dfrac{\cos\theta {\sin}^{2}\theta }{(1 + \cos\theta)(\sin\theta - 1 + \cos\theta) }\\ \\ \tt\dfrac{\sin\theta(1 -  {\sin}^{2}\theta) }{(1 + \sin\theta)(\sin\theta + \cos\theta - 1) } +  \dfrac{\cos\theta(1 -  {\cos}^{2} \theta}{(1 + \cos\theta )(\sin\theta + \cos\theta - 1) }\\\\

\tt\dfrac{\sin\theta(1 + \sin\theta)(1 - \sin\theta) }{(1 + \sin\theta)(\sin\theta + \cos\theta - 1) } +  \dfrac{\cos\theta(1  + \cos \theta)(1 - \cos\theta)}{(1 + \cos\theta )(\sin\theta + \cos\theta - 1) }\\\\

\tt\dfrac{(\sin\theta - {\sin}^{2}\theta) }{(\sin\theta + \cos\theta - 1)} +  \dfrac{(\cos\theta- {\cos}^{2} \theta}{(\sin\theta + \cos\theta - 1) )}\\\\

\tt\dfrac{\sin\theta+\cos\theta-{\sin}^2\theta-{\cos}^2\theta}{\sin\theta+\cos\theta-1}\\\\

\tt\dfrac{\sin\theta+\cos\theta-(\sin^2\theta+\cos^2\theta)}{\sin\theta+\cos\theta-1}\\\\

Substituting the value of \sf\sin^2\theta+\cos^2\theta as 1.

\\\\\tt\dfrac{\sin\theta+\cos\theta-1}{\sin\theta+\cos\theta-1}\\\\

On cancelling, we get:

\\\\\tt1\\\\\\

RHS:

\\\\\\1\\\\\\

LHS = RHS

\\\\

Hence Proved.

Similar questions