Math, asked by Tanmay0312, 1 year ago

prove that sin⁴A+cos⁴A/1-2sin²A×cos²A=1​

Answers

Answered by prabhav24051999
0

Step-by-step explanation:

  {( { \sin(x)}^{2} +  { \cos(x) }^{2} ) }^{2}  =  { \sin(x) }^{4}  +  { \cos(x) }^{4}  + 2 { \sin(x) }^{2}  { \cos(x) }^{2}

 { \sin(x) }^{2}  +  { \cos(x) }^{2}  = 1

Using these identities you can prove the relation.

Answered by Anonymous
45

To prove -

 \frac{ \sin( {a}^{4} ). \cos( {a}^{4} )  }{1 - 2 \sin( {a}^{2}) . { \cos(a) }^{2} }   = 1 \\

Proof -

LHS →

Taking Numerator -

sin⁴a + cos ⁴a →( sin²a)² + (cos²a)²

As we know that -

sin²a + cos²a → ( sina +cosa)² - 2sina.cosa.

So value of sin⁴a + cos ⁴a will -

(sin²a+cos²a)- 2sin²a.cos²a

As we know that sin²a+cos²a = 1 , so -

(1)² - 2sin²acos²a

Numerator → 1 - 2cos²a . sin²a

Now putting the value of numerator in the fraction -

 \frac{1 - 2 {sin(a)}^{2}.cos( {a)}^{2}  }{1 - 2sin ({a})^{2} .cos ({a})^{2} }  \\  = 1

→ 1 = LHS= RHS

hence proved.

Similar questions