Math, asked by leekshithak3, 1 month ago

prove that sin7x+sin5x+sin9x+sin3x/cos7x+cos5x+cos9x+cos3x=tan6x​

Answers

Answered by LivetoLearn143
6

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{sin7x + sin5x + sin9x + sin3x}{cos7x + cos5x +cos9x +  cos3x}

\rm  \:  = \:\dfrac{(sin7x + sin5x) + (sin9x + sin3x)}{(cos7x + cos5x) +(cos9x +  cos3x)}

We know,

\boxed{ \sf{ \:cosx + cosy = 2cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}

\boxed{ \sf{ \:sinx + siny = 2sin\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}

Using these results, we get

\rm \:=\dfrac{2sin\bigg(\dfrac{7x + 5x}{2} \bigg)cos\bigg(\dfrac{7x - 5x}{2} \bigg) + 2sin\bigg(\dfrac{9x + 3x}{2} \bigg)cos\bigg(\dfrac{9x - 3x}{2} \bigg)}{2cos\bigg(\dfrac{7x + 5x}{2} \bigg)cos\bigg(\dfrac{7x - 5x}{2} \bigg) + 2cos\bigg(\dfrac{9x + 3x}{2} \bigg)cos\bigg(\dfrac{9x - 3x}{2} \bigg)}

\rm \:  =  \:  \:\dfrac{2sin6xcosx + 2sin6xcos3x}{2cos6xcosx + 2cos6xcos3x}

\rm \:  =  \:  \:\dfrac{2sin6x(cosx + cos3x)}{2cos6x(cosx + cos3x)}

\rm \:  =  \:  \:\dfrac{sin6x}{cos6x}

\rm \:  =  \:  \:tan6x

Hence, Proved

Similar questions