prove that: sin8 theta - cos8 theta= (sin2 theta - cos2 theta)(1-2sin2 theta cos2theta)
Answers
Answered by
22
hope this helps you
plz mark it as brainliest..plz
plz mark it as brainliest..plz
Attachments:
Answered by
13
Answer:
Proved
Step-by-step explanation:
prove that: sin8 theta - cos8 theta= (sin2 theta - cos2 theta)(1-2sin2 theta cos2theta)
LHS
= Sin⁸θ - Cos⁸θ
a² - b² = (a + b) (a-b)
here a = Sin⁴θ & b = Cos⁴θ
= (Sin⁴θ + Cos⁴θ)(Sin⁴θ - Cos⁴θ)
= (Sin⁴θ + Cos⁴θ)(Sin²θ + Cos²θ) (Sin²θ - Cos²θ)
Sin²θ + Cos²θ) = 1
= (Sin⁴θ + Cos⁴θ)(Sin²θ - Cos²θ)
a² + b² = (a + b)² - 2ab
a = Sin²θ & b = Cos²θ
= ((Sin²θ + Cos²θ)² - 2Sin²θCos²θ)(Sin²θ - Cos²θ)
= (1 - 2Sin²θCos²θ)(Sin²θ - Cos²θ)
= (Sin²θ - Cos²θ)(1 - 2Sin²θCos²θ)
= RHS
QED
Similar questions
India Languages,
7 months ago
English,
7 months ago
Math,
7 months ago
Chemistry,
1 year ago
Hindi,
1 year ago