Math, asked by roshandavid22, 1 year ago

prove that sinA/1+cosA+1+cosA/sinA=2cosecA 

Answers

Answered by arpitmomaya
113
here is the answer. sinA/1+cosA + 1+cosA/sinA = [sin^2A + (1 + cosA)^2]/sinA(1 + cosA) = (sin^2A + 1 + cos^2A + 2cosA)/sinA(1 + cosA) = (1 + 1 + 2cosA)/sinA(1 + cosA) [since,sin^2A + cos^2A = 1] = (2 + 2cosA)/sinA(1 + cosA) = 2(1 + cosA)/sinA(1 + cosA) = 2/sinA = 2 cosecA [since 1/sinA = cosecA] = R.H.S.
Answered by Anonymous
128
= sinA/1+cosA + 1+cosA/sinA
= [sin^2A + (1 + cosA)^2]/sinA(1 + cosA)
= (sin^2A + 1 + cos^2A + 2cosA)/sinA(1 + cosA)
= (1 + 1 + 2cosA)/sinA(1 + cosA) [since,sin^2A + cos^2A = 1]
= (2 + 2cosA)/sinA(1 + cosA) = 2(1 + cosA)/sinA(1 + cosA)
= 2/sinA = 2 cosecA [since 1/sinA = cosecA] = R.H.S.

Proved

Anonymous: mark as best plzzzzzzzzzzzzzzzzzzzzzzzzzz
Similar questions