prove that sinA/1+cosA = 1-cosA/sinA
Answers
Answer:
Step-by-step-explanation:
We have given a trigonometric equation.
We have to prove that equation.
The given trigonometric equation is
Multiplying and dividing by ( 1 + cos A ), we get,
We know that,
We know that,
Hence proved!
Step-by-step explanation:
Answer:
\displaystyle{\boxed{\red{\sf\:\dfrac{\sin\:A}{1\:+\:\cos\:A}\:=\:\dfrac{1\:-\:\cos\:A}{\sin\:A}\:}}}
1+cosA
sinA
=
sinA
1−cosA
Step-by-step-explanation:
We have given a trigonometric equation.
We have to prove that equation.
The given trigonometric equation is
\displaystyle{\sf\:\dfrac{\sin\:A}{1\:+\:\cos\:A}\:=\:\dfrac{1\:-\:\cos\:A}{\sin\:A}}
1+cosA
sinA
=
sinA
1−cosA
\displaystyle{\sf\:RHS\:=\:\dfrac{1\:-\:\cos\:A}{\sin\:A}}RHS=
sinA
1−cosA
Multiplying and dividing by ( 1 + cos A ), we get,
\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1\:-\:\cos\:A}{\sin\:A}\:\times\:\dfrac{1\:+\:\cos\:A}{1\:+\:\cos\:A}}⟹RHS=
sinA
1−cosA
×
1+cosA
1+cosA
\displaystyle{\implies\sf\:RHS\:=\:\dfrac{(\:1\:-\:\cos\:A\:)\:(\:1\:+\:\cos\:A\:)}{\sin\:A\:(\:1\:+\:\cos\:A\:)}}⟹RHS=
sinA(1+cosA)
(1−cosA)(1+cosA)
We know that,
(a−b)(a+b)=a
2
−b
2
1−cos
2
A
We know that
2
A+cos
2
A=1
2
A=sin
2
A
1+cosA
sinA
LHS=RHS
Hence proved!