Math, asked by nishantkumar32, 6 months ago

Prove that
sinA - cosA + 1/cosA + sinA -1 = 1/secA– tanA​

Answers

Answered by anurag2147
1

Answer:

sinA - cosA + 1/cosA + sinA -1 = 1/secA– tanA

LHS= sinA - cosA + 1 / cosA + sinA -1

dividing numerator and denominator by cosA

tanA -1+secA/1+tanA-secA =

=tanA+secA-1 /tanA-secA+1

=tanA+secA-(sec²A-tan²A)/tanA-secA+1

=tanA+secA-{(secA-tanA)(secA+tanA)}/tanA-sec+1

=tanA+secA{1-secA+tanA}/tanA-secA+1

=tanA+secA=sinA/cosA +1/cos A

=1+sinA/cosA × 1-sinA/1-sinA=1-sin²A/cosA(1-sinA)

=cos²A/cosA(1-sinA)= cosA/1-sinA

RHS = 1/secA-tanA = 1/1-sinA/cosA = cosA /1-sinA

LHS=RHS = cosA /1-sinA

hence proved

Similar questions