Math, asked by Anonymous, 1 year ago

prove that sina-cosa+1/sina+cosa-1=1/seca-tana.
who will answer correct will be the brain list .​

Answers

Answered by niyatikapadia6p0fn0d
12

Answer:

LHS = sinA-cosA+1/sinA+cosA-1

divide both numerator and denominator by cosA

LHS=(tanA−1+secA)/(tanA+1−secA)

Now

sec2A=1+tan2A

sec2A−tan2A=1

Using above relation at denominator of LHS

LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)

LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))

LHS=1/(secA−tanA)

LHS=RHS

Hence Proved.

Step-by-step explanation:

Answered by bharatbijou
2

Answer:

LHS = sinA-cosA+1/sinA+cosA-1

divide both numerator and denominator by cosA

LHS=(tanA−1+secA)/(tanA+1−secA)

Now

sec2A=1+tan2A

sec2A−tan2A=1

Using above relation at denominator of LHS

LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)

LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))

LHS=1/(secA−tanA)

LHS=RHS

Hence Proved.

Similar questions