Math, asked by sonalirajput50, 6 months ago

prove that (SinA+CosA) (SecA+CosecA)=2SecA.CosecA​

Answers

Answered by kayalvizhirajkumar20
2

(sᴇᴄA+ᴄᴏsᴇᴄA)(sɪɴA+ᴄᴏsA)=+sᴇᴄA.ᴄᴏsᴇᴄA.

Cᴏɴsɪᴅᴇʀ LHS

(sᴇᴄA+ᴄᴏsᴇᴄA)(sɪɴA+ᴄᴏsA)

=sᴇᴄA(sɪɴA+ᴄᴏsA)+ᴄᴏsᴇᴄA(sɪɴA+ᴄᴏsA)

=sᴇᴄA.sɪɴA+sᴇᴄA.ᴄᴏsA+ᴄᴏsᴇᴄA.sɪɴA+ᴄᴏsᴇᴄA.ᴄᴏsA

(As ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ sᴇᴄA.ᴄᴏsA= ᴀɴᴅ ᴄᴏsᴇᴄA.sɪɴA=)

=sɪɴA.sᴇᴄA+++ᴄᴏsᴇᴄA.ᴄᴏsA

=sɪɴA./ᴄᴏsA++ᴄᴏsA./sɪɴA

=+ᴛᴀɴA+ᴄᴏᴛA

=+sɪɴA/ᴄᴏsA+ᴄᴏsA/sɪɴA.

=+(sɪɴ²A+ᴄᴏs²A)/ᴄᴏsA.sɪɴA

(As ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ sɪɴ²A+ᴄᴏs²A=)

=+/ᴄᴏsA.sɪɴA

Bᴜᴛ ᴡᴋᴛ /sɪɴA=ᴄᴏsᴇᴄA ᴀɴᴅ /ᴄᴏsᴄᴇA

Tʜᴇʀᴇғᴏʀᴇ LHS=+sᴇᴄA.ᴄᴏsᴇᴄA.

Hᴇɴᴄᴇ LHS=RHS

Similar questions