Math, asked by TbiaSupreme, 1 year ago

Prove that (sinA + cosec A)² + (cosA + secA)² = 7 + tan²A + cot²A

Answers

Answered by mysticd
28
Hi ,

**************************************
We know that ,

i ) sinAcosecA = 1

ii ) cosAsecA = 1

iii ) cosec²A = 1 + cot²A

iv ) sec²A = 1 + tan²A

*************************************

LHS = ( sinA + cosecA )² + ( cos A + sec A )²

= sin²A + cosec²A +

2sinAcosecA+cos²A+sec²A + 2cosAsecA

= ( sin²A+cos²A)+cosec²A+sec²A+2+2

= 1 + ( 1 + cot²A ) + ( 1 + tan²A ) + 4

= 7 + tan²A + cot²A

= RHS

I hope this helps you.

: )
Answered by Anonymous
4

\bf\huge LHS = (sinA + cosecA)^2 + (cosA + secA)^2




\bf\huge (sin^2 A + cosec^2 A + 2sinA cosecA ) + (cos^2 A + sec^2 A + 2 cosA SecA)




\bf\huge (sin^2 A + cosec^2 A + 2 sinA . \frac{1}{sinA}) + (cos^2A + sec^2 A + 2 cosA . \frac{1}{cosA})




\bf\huge (sin^2 A + cosec^2 A + 2) + (cos^2 A + sec^2 A + 2)




\bf\huge (sin^2 A + cos^2 A + 2) + (cos^2 A + sec^2 A + 2)




\bf\huge sin^2 A + cos^2 A + cosec^2 A + sec^2 A + 4




\bf\huge 1 + (1 + cot^2) + (1 + tan^2 A) + 4




\bf\huge 7 + tan^2 A + cot^2 A



Similar questions