Prove that (sinA + cosec A)² + (cosA + secA)² = 7 + tan²A + cot²A
Answers
Answered by
28
Hi ,
**************************************
We know that ,
i ) sinAcosecA = 1
ii ) cosAsecA = 1
iii ) cosec²A = 1 + cot²A
iv ) sec²A = 1 + tan²A
*************************************
LHS = ( sinA + cosecA )² + ( cos A + sec A )²
= sin²A + cosec²A +
2sinAcosecA+cos²A+sec²A + 2cosAsecA
= ( sin²A+cos²A)+cosec²A+sec²A+2+2
= 1 + ( 1 + cot²A ) + ( 1 + tan²A ) + 4
= 7 + tan²A + cot²A
= RHS
I hope this helps you.
: )
**************************************
We know that ,
i ) sinAcosecA = 1
ii ) cosAsecA = 1
iii ) cosec²A = 1 + cot²A
iv ) sec²A = 1 + tan²A
*************************************
LHS = ( sinA + cosecA )² + ( cos A + sec A )²
= sin²A + cosec²A +
2sinAcosecA+cos²A+sec²A + 2cosAsecA
= ( sin²A+cos²A)+cosec²A+sec²A+2+2
= 1 + ( 1 + cot²A ) + ( 1 + tan²A ) + 4
= 7 + tan²A + cot²A
= RHS
I hope this helps you.
: )
Answered by
4
Similar questions