prove that (sinA+cosecA)^2+(cosA+secA)^2=7+tan^2A+cot^2A
Answers
Answered by
11
sin^2A + cosec^2A + 2 sinA × cosecA + cos^2A + sec^2A + 2 sevA × cosA
sin^2 A + cos^A +1 + cot^2 A + 1+ tan^2A + 2 +2
7+ tan^2A + cot^2A
sin^2 A + cos^A +1 + cot^2 A + 1+ tan^2A + 2 +2
7+ tan^2A + cot^2A
Answered by
17
Given:
( sin A+cosec A )² + ( cos A + sec A )²
[ ( a + b )² = a² + b² + 2 a b ]
==> sin²A + cosec²A+2 sin A cosec A + cos²A + sec²A + 2 cos A sec A
[ cosec A = 1 /sin A
sec A = 1 / cos A ]
==> sin²A + cos²A + cosec²A + sec²A + 2 sin A×1/sin A + 2 cos A×1/cos A
[ sin²A+cos²A=1 ]
==> 1 + cosec²A + sec²A+2+2
[1 + tan²A = sec²A
1 + cot²A = cosec²A ]
==> 5 + ( 1 + cot²A ) + ( 1 + tan²A)
==> 5 + 1 + 1 + cot²A + tan²A
==> 7 + tan²A+cot²A
L.H.S = R.H.S [ Proved ]
___________________________________________________________________
Similar questions