PROVE THAT:
sinA/cotA+cosecA =2+ sinA/cotA-cosecA
Answers
Answered by
11
hello
your answer....↓↓
⇒ LHS =
sinA/(cotA+cosecA)
= (sinA)(cosecA-cotA)/(cosecA+cotA)(cosecA-cotA)
= (1-cosA)/(cosec2A-cot2A)
= (1-cosA)/1 = 1-cosA
⇒ RHS =
2+(sinA)/(cotA-cosecA)
= 2+(sinA)(cotA+cosecA)/(cotA-cosecA)(cotA+cosecA)
= 2+(cosA+1)/(cot2A-cosec2A)
= 2+(cosA+1)/(-1)
= 2-cosA-1
= 1-cosA
LHS=RHS=1-cosA
regards
:)
Answered by
13
Step-by-step explanation:
Given that:
Solution:
Take LHS
Multiply and divide by
Now take RHS
From Eq1 and eq2
it is proved that
Hope it helps you
Similar questions