Math, asked by sunerisulthana3309, 1 year ago

PROVE THAT:
sinA/cotA+cosecA =2+ sinA/cotA-cosecA

Answers

Answered by Anonymous
11

hello

your answer....↓↓

⇒ LHS =  

sinA/(cotA+cosecA)

= (sinA)(cosecA-cotA)/(cosecA+cotA)(cosecA-cotA)

= (1-cosA)/(cosec2A-cot2A)

= (1-cosA)/1 = 1-cosA

⇒ RHS =  

2+(sinA)/(cotA-cosecA)

= 2+(sinA)(cotA+cosecA)/(cotA-cosecA)(cotA+cosecA)

= 2+(cosA+1)/(cot2A-cosec2A)

= 2+(cosA+1)/(-1)

= 2-cosA-1

= 1-cosA

LHS=RHS=1-cosA

regards

:)

Answered by hukam0685
13

Step-by-step explanation:

Given that:

 \frac{sinA}{cotA + cosec A}  = 2 + \frac{sin A}{cotA  -  cosec A} \\  \\

Solution:

Take LHS

Multiply and divide by

cotA  -  cosec A \\  \\

 \frac{sin A}{cotA + cosec A} \times  \frac{cotA  - cosec A}{cotA  -  cosecA}  \\  \\  =  \frac{sin A(cotA  - cosec A)}{ {cot}^{2} A - {cosec}^{2} A}  \\  \\  \because {cosec}^{2}A - {cot}^{2} A = 1 \\  \\  = \frac{sin A(cosecA  - cot A)}{1} \\  \\  = sin A\bigg( \frac{1}{sin A}  -  \frac{cos A}{sin A} \bigg) \\  \\

 = sin A\bigg( \frac{1 - cos A}{sinA}\bigg  ) \\  \\ = \bold{1  - cos A}  \:  \:  \:  \: ...eq1\\  \\

Now take RHS

2 + \frac{sin A}{cotA  -  cosec A} \\  \\  = 2 + \frac{sin A}{cotA  -  cosec A} \times  \frac{cotA +   cosec A}{cotA   +  cosec A}  \\  \\  = 2  -  \frac{sin A(cotA    + cosec A)}{ {cosec}^{2} A -  {cot}^{2}  A }  \\  \\  = 2 - sin A(cotA    + cosec A) \\  \\  = 2 - sin A\bigg(\frac{cos A}{sinA}    +  \frac{1}{sin A} \bigg) \\ \\  = 2 -  \frac{sin A(1 + cos A)}{sin A}  \\  \\  = 2 - 1 - cos A \\  \\  =\bold{ 1 - cos A} \:  \:  \:  \: ...eq2 \\  \\

From Eq1 and eq2

it is proved that

 \bold{\frac{sinA}{cotA + cosec A}  = 2 + \frac{sin A}{cotA  -  cosec A}} \\  \\

Hope it helps you

Similar questions