Math, asked by premarani23, 1 year ago

Prove that sinx/1+cosx = tanx/2​

Answers

Answered by vaishnavitiwari1041
2

Answer:

Here's your answer

 \frac{ \sin(x) }{1 +  \cos(x) }  =  \tan( {x}^{2} )  \\  \\ lhs \\  \\ rationalising \ \\ \frac{ \sin(x) }{1 +  \cos(x) }  \times  \frac{1 -  \cos(x) }{1 -  \cos(x) }   \\ =  \frac{ \sin(x)(1 -  \cos(x)  )}{1 -  \cos( {x}^{2} ) }

Step-by-step explanation:

 =  \frac{ \sin(x) (1 -  \cos(x) }{ \sin( {x}^{2} ) }  \\  \\  =  \frac{1 -  \cos(x) }{ \sin(x) }  \\  \\  =  \frac{1}{ \sin(x) }  -  \frac{ \cos(x) }{ \sin(x) }  \\  \\  =  \csc(x)  -  \tan(x)

Answered by Anonymous
0

Answer:

We have

Sin x /1+Cos x=Tan x/2

Taking left hand side

=Sin x /1+Cos x

:- (Sin x = 2Sin x/2. Cos x/2)

And :-(1+Cos x= 2Cos ^2 x/2)

So,

2Sin x/2.Cos x/2

= - - - - - - - - - - - - - -

2Cos^2 x/2

Sin x/2

= - - - - - - - -

Cos x/2

= Tan x/2

Hence proved

Mark as brainleist

Attachments:
Similar questions