Prove that :(sinx+cosecx)^2+(cosx+secx)^2=7+tan^2x+cot^2x
Answers
Answered by
29
Hey there !!
Prove that :-
→ ( sin x + cosec x )² + ( cos x + sec x )² = 7 + tan²x + cot²x .
Solution :-
→ Solving LHS,
= ( sin x + cosec x )² + ( cos x + sec x )² .
= ( sin²x + cosec²x + 2sin x cosec x ) + ( cos²x + sec²x + 2cos x sec x ) .
= ( sin²x + cosec²x + 2 ) + ( cos²x + sec²x + 2 ) .
[ ∵ sin x cosec x = 1 and cos x cosec x = 1 ] .
= sin²x + cosec²x + 2 + cos²x + sec²x + 2 .
= ( sin²x + cos²x ) + 4 + ( cosec²x + sec²x ) .
= 1 + 4 + ( 1 + cot²x ) + ( 1 + tan²x ) .
[ ∵ sin²x + cos²x = 1, cosec²x = 1 + cot²x and sec²x = 1 + tan²x ] .
= 1 + 4 + 1 + coy²x + 1 + tan²x .
= ( 7 + tan²x + cot²x ) = RHS .
∴ LHS = RHS .
Hence, it is proved .
THANKS
#BeBrainly.
Similar questions