Prove that tan 3x= 3tanx - tan^3x/1-3tan^3x
Answers
Answered by
30
Hi ,
1 ) tan2x
= tan( x + x )
= ( tanx + tanx )/( 1 - tanxtanx)
= 2tanx/( 1 - tan² x ) ---( a )
Now ,
tan3x
= tan( 2x + x )
= ( tan2x + tanx )/( 1 - tan2xtanx )
= [ 2tanx/( 1 - tan² x ) + tanx ]/{[1-(2tanx/(1 -tan² x)]tanx }
= [ 2tanx +tanx(1-tan²x)]/[1-tan²x-2tan²x]
= ( 2tanx + tanx-tan³x) /( 1 - 3tan²x )
= ( 3tanx - tan³ x ) / ( 1 - 3tan²x )
Hence proved.
I hope this helps you.
: )
1 ) tan2x
= tan( x + x )
= ( tanx + tanx )/( 1 - tanxtanx)
= 2tanx/( 1 - tan² x ) ---( a )
Now ,
tan3x
= tan( 2x + x )
= ( tan2x + tanx )/( 1 - tan2xtanx )
= [ 2tanx/( 1 - tan² x ) + tanx ]/{[1-(2tanx/(1 -tan² x)]tanx }
= [ 2tanx +tanx(1-tan²x)]/[1-tan²x-2tan²x]
= ( 2tanx + tanx-tan³x) /( 1 - 3tan²x )
= ( 3tanx - tan³ x ) / ( 1 - 3tan²x )
Hence proved.
I hope this helps you.
: )
Similar questions