prove that tan(45+theta)+tan(45-theta) = 2sec2theta
Answers
Answered by
72
tan(45°+θ)+tan(45°-θ)
=(tan45°+tanθ)/(1-tan45°tanθ)+(tan45°-tanθ)/(1+tan45°tanθ)
=(1+tanθ)/(1-tanθ)+(1-tanθ)/(1+tanθ) [∵, tan45°=1]
={(1+tanθ)²+(1-tanθ)²}/(1-tanθ)(1+tanθ)
=(1+2tanθ+tan²θ+1-2tanθ+tan²θ)/(1-tan²θ)
=(2+2tan²θ)/(1-tan²θ)
=2(1+sin²θ/cos²θ)/(1-sin²θ/cos²θ)
=2{(cos²θ+sin²θ)/cos²θ}/{(cos²θ-sin²θ)/cos²θ}
=2(1/cos2θ) [∵, sin²θ+cos²θ=1 and cos²θ-sin²θ=cos2θ]
=2sec2θ (Proved)
=(tan45°+tanθ)/(1-tan45°tanθ)+(tan45°-tanθ)/(1+tan45°tanθ)
=(1+tanθ)/(1-tanθ)+(1-tanθ)/(1+tanθ) [∵, tan45°=1]
={(1+tanθ)²+(1-tanθ)²}/(1-tanθ)(1+tanθ)
=(1+2tanθ+tan²θ+1-2tanθ+tan²θ)/(1-tan²θ)
=(2+2tan²θ)/(1-tan²θ)
=2(1+sin²θ/cos²θ)/(1-sin²θ/cos²θ)
=2{(cos²θ+sin²θ)/cos²θ}/{(cos²θ-sin²θ)/cos²θ}
=2(1/cos2θ) [∵, sin²θ+cos²θ=1 and cos²θ-sin²θ=cos2θ]
=2sec2θ (Proved)
Answered by
19
Your answer is in the attachment hope this helps you....
Have a nice day.....
Attachments:
Similar questions