Prove that:-Tan 70 = tan 20 + 2 tan 50
Answers
Answered by
154
with reference to the attachment....
⏹Split tan 70 as tan(50+20)
✔️✔️so now use the formula:-------
⏹tan(A+B)=TanA+TanB÷1-TanATanB⏹
✔️✔️In the equation 2 use the formula where:-----
⏹Tan(90-A=cotA)⏹
✔️In the last equation i.e 3rd one use the formula :------
⏹cotA=1÷tanA⏹
⏹Split tan 70 as tan(50+20)
✔️✔️so now use the formula:-------
⏹tan(A+B)=TanA+TanB÷1-TanATanB⏹
✔️✔️In the equation 2 use the formula where:-----
⏹Tan(90-A=cotA)⏹
✔️In the last equation i.e 3rd one use the formula :------
⏹cotA=1÷tanA⏹
Attachments:
Answered by
18
Answer:
- According to the trigonometric identity,
tan70 = tan (20 + 50)
tan70= (tan20 + tan50) / 1-tan20 tan50
Tan70 - tan20 tan50 tan70= tan20 + tan50
Also tan70 tan20 = tan70 cot70 = 1
- Hence, it will change to following equation
tan70 - tan50 = tan20 + tan50
So tan70 = tan20 + 2tan50
- Complementary angles:
tan70=cot20
tan70tan20=cot20tan20=1
- Tangent difference angle formula:
tan(a−b)=tana−tanb 1+tana tanb
tan50=tan(70−20)=tan70−tan20 1+tan70 tan20=tan70−tan20 1+1
2tan50=tan70−tan20
tan70=tan20+2tan50
Similar questions