Math, asked by minibollywood04, 9 months ago

prove that

tan A - cot A= ( 2sin^2A-1)/(sinA×cos A)​

Answers

Answered by Anonymous
7

Answer:

CotA- tanA

=cosA/sinA- sinA/cosA

=cos^2A-sin^2A)/sinAcosA

=cos^2A-(1-cos^2A)/sinAcosA

=cos^2A-1+cos^2A/sinAcosA

=2cos^2A-1/sinAcosA

Step-by-step explanation:

Answered by ksonakshi70
9

Answer:

 \tan( \alpha ) -  \cot( \alpha )   =  \frac{2 { \sin( \alpha ) }^{2}  - 1}{ \sin( \alpha )  \cos(  \beta )}  \\  \tan( \alpha )  -  \cot( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  =  \frac{ { \sin( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2} }{ \sin( \alpha ) \cos( \alpha )  }  \\  \frac{ { \sin( \alpha ) }^{2} - (1 -  { \sin( \alpha ) }^{2}  }{ \sin( \alpha )  \cos( \alpha ) }  \\  =  \frac{2 { \sin( \alpha ) - 1 }^{2} }{ \sin( \alpha )  \cos( \alpha ) }

Similar questions