Math, asked by MrUnknown9851, 5 months ago

Prove that

tan θ tan θ + sec θ + 1
_____ = ______________
sec θ tan θ + sec θ - 1​

Attachments:

Answers

Answered by Anonymous
49

\huge\sf\purple{\underline{\underline{Correct \: Question :-}}}

\sf{}

 \sf  \dfrac{tan \: θ}{sec \: θ - 1}  \:  =  \: \sf  \dfrac{tan \: θ  + sec \: θ + 1}{tan \: θ  + sec \: θ  -  1}

\sf{}

\huge\sf{\underline{\underline{Solution :-}}}

\sf{}

Proof :

  \implies\tt{1 +  {tan}^{2} \: θ} = {{sec}^{2}} \: θ  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \\  \\ \implies \tt{ {tan}^{2} \:  θ =  \: {sec}^{2} \: θ - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \implies\tt{tan \:θ  \:  \: tan \: θ  =( sec \:θ + 1) \: (sec \: θ - 1) } \\  \\ \implies\tt \dfrac{tan \: θ}{sec \:θ \:  - 1  } \:  = \:    \tt\dfrac{sec \: θ + 1}{tan \: θ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\

 \implies\tt\dfrac {tan \:θ }{sec \: θ - 1}  \:  =  \: \dfrac{tan \:θ   +  sec  \: θ + 1}{sec \: θ - 1 + tan \: θ} \:  \: .....(Theorem \: on \: equal \: ratios)\sf{}

 \implies \tt \dfrac{tan \: θ}{sec \: θ - 1} \:  =  \: \tt \dfrac{tan \: θ + sec \: θ + 1}{tan \:θ  + sec \: θ - 1 }


Anonymous: MɪɴᴅBʟᴏᴡɪɴɢ!!❤️
Answered by Anonymous
24

Refer the attachment......Pag1 is the answer of ur question pag2 is additional prooof to other identity

Attachments:
Similar questions