Math, asked by Adityabiju, 1 year ago

prove that - tan theta-cos theta / sin theta*cos theta =tan^2 theta - cos ^2 theta.

Answers

Answered by pulakmath007
5

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \tan \theta -  \cot \theta}{ \sin \theta \cos \theta} =  { \tan}^{2} \theta -   { \cot}^{2} \theta   }

PROOF

RHS

 \displaystyle \sf{ =  { \tan}^{2} \theta -   { \cot}^{2} \theta   }

 \displaystyle \sf{ =  \frac{{ \sin}^{2} \theta}{{ \cos}^{2} \theta} -  \frac{{ \cos}^{2} \theta}{{ \sin}^{2} \theta}}

 \displaystyle \sf{ =  \frac{{ \sin}^{4} \theta - { \cos}^{4} \theta }{{ \sin}^{2} \theta \: { \cos}^{2} \theta} }

 \displaystyle \sf{ =  \frac{({ \sin}^{2} \theta  + \: { \cos}^{2} \theta)({ \sin}^{2} \theta \:  - { \cos}^{2} \theta)}{{ \sin}^{2} \theta \: { \cos}^{2} \theta} }

 \displaystyle \sf{ =  \frac{({ \sin}^{2} \theta \:  - { \cos}^{2} \theta)}{{ \sin}^{2} \theta \: { \cos}^{2} \theta} }

 \displaystyle \sf{ =   \frac{1}{{ \sin}^{} \theta \: { \cos}^{} \theta} \times  \frac{({ \sin}^{2} \theta \:  - { \cos}^{2} \theta)}{{ \sin}^{} \theta \: { \cos}^{} \theta} }

 \displaystyle \sf{ =   \frac{1}{{ \sin}^{} \theta \: { \cos}^{} \theta} \times   \bigg( \frac{{ \sin}^{2} \theta \:  }{{ \sin}^{} \theta \: { \cos}^{} \theta} - \frac{{ \cos}^{2} \theta \:  }{{ \sin}^{} \theta \: { \cos}^{} \theta}\bigg) }

 \displaystyle \sf{ =   \frac{1}{{ \sin}^{} \theta \: { \cos}^{} \theta} \times   \bigg( \frac{{ \sin}^{} \theta \:  }{ \: { \cos}^{} \theta} - \frac{{ \cos}^{} \theta \:  }{{ \sin}^{} \theta }\bigg) }

 \displaystyle \sf{ =   \frac{1}{{ \sin}^{} \theta \: { \cos}^{} \theta} \times   \bigg( \tan \theta -  \cot \theta\bigg) }

 \displaystyle \sf{  = \frac{ \tan \theta -  \cot \theta}{ \sin \theta \cos \theta}  }

= LHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of p if

3cosec2A(1+COSA)(1 - COSA) =p

https://brainly.in/question/23381523

2. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

Answered by amitnrw
3

Given      \dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot^2 \theta

To Find : Prove

Solution:

\dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot ^2 \theta

RHS = \tan^2 \theta - \cot ^2 \theta

= \dfrac{\sin^2 \theta}{\cos^2 \theta} -  \dfrac{\cos^2 \theta}{\sin^2 \theta}

= \dfrac{\sin^4 \theta - \cos^4 \theta}{\cos^2 \theta\sin^2 \theta}

= \dfrac{(\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta)}{\cos^2 \theta\sin^2 \theta}

= \dfrac{1(\sin^2 \theta - \cos^2 \theta)}{\cos^2 \theta \sin^2 \theta}

= \dfrac{ \sin^2 \theta - \cos^2 \theta }{\cos \theta \sin \theta\cos \theta \sin  \theta}

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{ \sin^2 \theta - \cos^2 \theta }{\\cos \theta \sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{ \sin^2 \theta }{\\cos \theta \sin  \theta} - \dfrac{ \cos^2 \theta }{\\cos \theta \sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{\sin  \theta }{\cos \theta } - \dfrac{ \cos  \theta }{\sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left(\tan \theta } -\cot \theta} \right)

=\dfrac{\tan \theta -\cot \theta}{\cos \theta \sin \theta}

= LHS

 \dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot^2 \theta

QED

HENCE PROVED

Learn more:

prove that tan theta + cot theta the whole square is equal to sec ...

https://brainly.in/question/12238613

sin2 A.tanA + cos2 A.cotA +2sinA.cosA = tanA + cot A prove it ...

https://brainly.in/question/5003193

Similar questions