Math, asked by meghagugu909, 1 year ago

Prove that tan theta + sec theta -1 upon tan theta -sec theta +1 = sec theta + tan theta

Answers

Answered by gundageetha2p6hnj0
5

hope it is helpful

thank u

Attachments:
Answered by sharonr
8

\frac{tan\ \theta + sec\ \theta -1}{tan\ \theta - sec\ \theta + 1} = sec\ \theta + tan\ \theta

Solution:

Given that, we have to prove:

\frac{tan\ \theta + sec\ \theta -1}{tan\ \theta - sec\ \theta + 1} = sec\ \theta + tan\ \theta

Take the LHS

\frac{tan\ \theta + sec\ \theta -1}{tan\ \theta - sec\ \theta + 1}

We know that,

sec^2 \theta -tan^2 \theta = 1

Therefore,

\frac{tan\ \theta + sec\ \theta -(sec^2\theta - tan^2\theta)}{tan\ \theta - sec\ \theta + 1}\\\\Expand\ by\ a^2 - b^2 = (a+b)(a-b)\\\\\frac{tan\ \theta + sec\ \theta - (( sec \theta + tan \theta)(sec\ \theta - tan\ \theta))}{tan\ \theta - sec\ \theta + 1}\\\\Take\ sec \theta + tan \theta\ as\ common\\\\\frac{sec \theta + tan \theta(1-(sec\ \theta - tan\ \theta)}{tan\ \theta - sec\ \theta + 1}\\\\\frac{sec \theta + tan \theta( 1 - sec\ \theta + tan \theta)}{tan\ \theta - sec\ \theta + 1}\\\\

sec\ \theta + tan\ \theta

Thus,

LHS = RHS

Thus proved

Learn more about this topic

Prove That : (tan theta + sec theta -1)(tan theta + sec theta +1)=2 sin theta/1 - sin theta

https://brainly.in/question/662702

Tan theta+sec theta-1/tan theta-

sec theta+1=1+SinTheta/cos theta

https://brainly.in/question/1391409

Similar questions