Prove that
tan75°+cot75°=4
Answers
Answered by
9
Hlew,
Here's your answer...
tan75°=tan(30°+45°)
=(tan30°+tan45°)/(1-tan30°tan45°)
={(1/√3)+1}/{1-(1/√3)(1)}
=(√3+1)/(√3-1)
So,cot75°=1/tan75°
=(√3-1)/(√3+1)
Then,tan75°+cot75°={(√3+1)2+(√3-1)2}/{(√3)2-(1)2}
=(3+1+2√3+3+1-2√3)/(3-1)
=4.
Thanks.
Sorry baby 'wink'
Answered by
1
Bonjour❤
Step-by-step explanation:
tan75°=tan(30°+45°)
=(tan30°+tan45°)/(1-tan30°tan45°)
={(1/√3)+1}/{1-(1/√3)(1)}
=(√3+1)/(√3-1)
=»cot75°=1/tan75°
=(√3-1)/(√3+1)
tan75°+cot75°={(√3+1)2+(√3-1)2}/{(√3)2-(1)2}
=(3+1+2√3+3+1-2√3)/(3-1)
=4.
Similar questions