prove that tanA/(1-cotA) +CotA/(1-tanA+cotA)
Answers
prove that
━━━━━━━━━━━━━━━━━━━━━━━
LHS:-
RHS:-
LHS = RHS
Hence proved.
━━━━━━━━━━━━━━━━━━━━
LHS:-
\begin{lgathered}\mapsto \sf\:\frac{tan \:A }{(1-cot\:A)}+\frac{cot\:A}{(1-tan\:A)}\\\\\end{lgathered}
↦
(1−cotA)
tanA
+
(1−tanA)
cotA
\begin{lgathered}\mapsto \sf\: \frac{ \frac{sin\:A}{cos\:A} }{1 - \frac{cos\:A}{sin\:A} } + \frac{ \frac{cos\:A}{sin\:A} }{1 - \frac{sin\:A}{cos\:A} } \\ \\\end{lgathered}
↦
1−
sinA
cosA
cosA
sinA
+
1−
cosA
sinA
sinA
cosA
\begin{lgathered}\mapsto\small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}+\frac{cos^2}{sin\:A(cos\:A-sin\:A)}\\\\\end{lgathered}
↦
cosA(sinA−cosA)
sin
2
A
+
sinA(cosA−sinA)
cos
2
\begin{lgathered}\mapsto \small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}-\frac{cos^2}{sin\:A(sin\:A-cos\:A)}\\\\\end{lgathered}
↦
cosA(sinA−cosA)
sin
2
A
−
sinA(sinA−cosA)
cos
2
\begin{lgathered}\mapsto \sf\:\frac{sin^3\:A-cos^3\:A}{sin\:A .cos\:A(sin\:A-cos\:A)}\\\\\end{lgathered}
↦
sinA.cosA(sinA−cosA)
sin
3
A−cos
3
A
\begin{lgathered}\mapsto\small \sf\:\frac{(sin\:A-cos\:A)(sin^{2}\:A+cos^{2}\:A+sin\:A.cos\:A)}{sin\:A .cos\:A(sin\:A-cos\:A)}\\\end{lgathered}
↦
sinA.cosA(sinA−cosA)
(sinA−cosA)(sin
2
A+cos
2
A+sinA.cosA)
\begin{lgathered}\sf\:by\: using\:(a^3-b^3)=(a+b)(a^2+b^2+ab)\\\\\end{lgathered}
byusing(a
3
−b
3
)=(a+b)(a
2
+b
2
+ab)
\begin{lgathered}: \implies \sf\:\frac{1+sin\:A. cos\:A}{sin\:A. cos\:A}\\\\\end{lgathered}
:⟹
sinA.cosA
1+sinA.cosA
RHS:-
\begin{lgathered}: \implies \sf\:(1+tan\:A+cot\:A)\\\\\end{lgathered}
:⟹(1+tanA+cotA)
\begin{lgathered}: \implies \sf\:(1+\frac{sin\:A}{cos\:A})+\frac{cos\:A}{sin\:A}\\\\\end{lgathered}
:⟹(1+
cosA
sinA
)+
sinA
cosA
\begin{lgathered}: \implies \sf\:\frac{sin\:A.cos\:A+sin^2\:A+cos^2\:A}{sin\:A.cos\:A}\\\\\end{lgathered}
:⟹
sinA.cosA
sinA.cosA+sin
2
A+cos
2
A
\begin{lgathered}: \implies \sf\:\frac{1+sin\:A. cos\:A}{sin\:A.cos\:A}\\\\\end{lgathered}
:⟹
sinA.cosA
1+sinA.cosA
LHS = RHS
Hence proved.
━━━━━━━━━━━━━━━━━━━━