Math, asked by ap9832847gmailcom, 1 year ago

prove that tanA/(1-cotA) +CotA/(1-tanA+cotA)

Answers

Answered by Anonymous
16

\large{\underline{\bf{\purple{Correct\:Question:-}}}}

prove that

   \sf\:\frac{tan \:A }{(1-cot\:A)}+\frac{cot\:A}{(1-tan\:A)}=(1+tan\:A+cot\:A)

━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\bf{\red{Solution:-}}}}

LHS:-

 \mapsto   \sf\:\frac{tan \:A }{(1-cot\:A)}+\frac{cot\:A}{(1-tan\:A)}\\\\

\mapsto   \sf\: \frac{ \frac{sin\:A}{cos\:A} }{1 -  \frac{cos\:A}{sin\:A} }  +  \frac{ \frac{cos\:A}{sin\:A} }{1 -  \frac{sin\:A}{cos\:A} } \\  \\

 \mapsto\small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}+\frac{cos^2}{sin\:A(cos\:A-sin\:A)}\\\\

\mapsto \small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}-\frac{cos^2}{sin\:A(sin\:A-cos\:A)}\\\\

\mapsto   \sf\:\frac{sin^3\:A-cos^3\:A}{sin\:A .cos\:A(sin\:A-cos\:A)}\\\\

\mapsto\small   \sf\:\frac{(sin\:A-cos\:A)(sin^{2}\:A+cos^{2}\:A+sin\:A.cos\:A)}{sin\:A .cos\:A(sin\:A-cos\:A)}\\

\sf\:by\: using\:(a^3-b^3)=(a+b)(a^2+b^2+ab)\\\\

: \implies   \sf\:\frac{1+sin\:A. cos\:A}{sin\:A. cos\:A}\\\\

RHS:-

: \implies   \sf\:(1+tan\:A+cot\:A)\\\\

: \implies \sf\:(1+\frac{sin\:A}{cos\:A})+\frac{cos\:A}{sin\:A}\\\\

: \implies   \sf\:\frac{sin\:A.cos\:A+sin^2\:A+cos^2\:A}{sin\:A.cos\:A}\\\\

: \implies   \sf\:\frac{1+sin\:A. cos\:A}{sin\:A.cos\:A}\\\\

LHS = RHS

Hence proved.

━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

LHS:-

\begin{lgathered}\mapsto \sf\:\frac{tan \:A }{(1-cot\:A)}+\frac{cot\:A}{(1-tan\:A)}\\\\\end{lgathered}

(1−cotA)

tanA

+

(1−tanA)

cotA

\begin{lgathered}\mapsto \sf\: \frac{ \frac{sin\:A}{cos\:A} }{1 - \frac{cos\:A}{sin\:A} } + \frac{ \frac{cos\:A}{sin\:A} }{1 - \frac{sin\:A}{cos\:A} } \\ \\\end{lgathered}

1−

sinA

cosA

cosA

sinA

+

1−

cosA

sinA

sinA

cosA

\begin{lgathered}\mapsto\small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}+\frac{cos^2}{sin\:A(cos\:A-sin\:A)}\\\\\end{lgathered}

cosA(sinA−cosA)

sin

2

A

+

sinA(cosA−sinA)

cos

2

\begin{lgathered}\mapsto \small \sf\:\frac{sin^2A}{cos\:A(sin\:A-cos\:A)}-\frac{cos^2}{sin\:A(sin\:A-cos\:A)}\\\\\end{lgathered}

cosA(sinA−cosA)

sin

2

A

sinA(sinA−cosA)

cos

2

\begin{lgathered}\mapsto \sf\:\frac{sin^3\:A-cos^3\:A}{sin\:A .cos\:A(sin\:A-cos\:A)}\\\\\end{lgathered}

sinA.cosA(sinA−cosA)

sin

3

A−cos

3

A

\begin{lgathered}\mapsto\small \sf\:\frac{(sin\:A-cos\:A)(sin^{2}\:A+cos^{2}\:A+sin\:A.cos\:A)}{sin\:A .cos\:A(sin\:A-cos\:A)}\\\end{lgathered}

sinA.cosA(sinA−cosA)

(sinA−cosA)(sin

2

A+cos

2

A+sinA.cosA)

\begin{lgathered}\sf\:by\: using\:(a^3-b^3)=(a+b)(a^2+b^2+ab)\\\\\end{lgathered}

byusing(a

3

−b

3

)=(a+b)(a

2

+b

2

+ab)

\begin{lgathered}: \implies \sf\:\frac{1+sin\:A. cos\:A}{sin\:A. cos\:A}\\\\\end{lgathered}

:⟹

sinA.cosA

1+sinA.cosA

RHS:-

\begin{lgathered}: \implies \sf\:(1+tan\:A+cot\:A)\\\\\end{lgathered}

:⟹(1+tanA+cotA)

\begin{lgathered}: \implies \sf\:(1+\frac{sin\:A}{cos\:A})+\frac{cos\:A}{sin\:A}\\\\\end{lgathered}

:⟹(1+

cosA

sinA

)+

sinA

cosA

\begin{lgathered}: \implies \sf\:\frac{sin\:A.cos\:A+sin^2\:A+cos^2\:A}{sin\:A.cos\:A}\\\\\end{lgathered}

:⟹

sinA.cosA

sinA.cosA+sin

2

A+cos

2

A

\begin{lgathered}: \implies \sf\:\frac{1+sin\:A. cos\:A}{sin\:A.cos\:A}\\\\\end{lgathered}

:⟹

sinA.cosA

1+sinA.cosA

LHS = RHS

Hence proved.

━━━━━━━━━━━━━━━━━━━━

Similar questions