Math, asked by Payal5690, 1 year ago

Prove that :- TanA -1+ sec A /TanA+1 - secA =1/(SecA-tanA)

Answers

Answered by dhruvsh
3

tanA + secA - 1 / tanA - secA + 1 = 1 + sinA / cosA

LHS = tanA + secA -1 / tanA - secA + 1

= tanA + secA + tan2A - sec2A / tanA - secA + 1

as tan2A + 1 = sec2A

= tanA + secA +(tanA + secA)(tanA - secA)/ tanA - secA + 1

= tanA + secA( 1 + tanA - secA) / tanA - secA + 1

=tanA + secA

= sinA / cosA + 1/cosA

= sinA + 1 / cosA



Payal5690: U hv proved wrong,my question is different
dhruvsh: now is it ok?
dhruvsh: i have modified it
Payal5690: Yes
Payal5690: No still it is wrong on RHS side.......
Answered by sandy1816
1

 \frac{tanA + secA - 1}{1 + tanA - secA}  \\  \\  =  \frac{secA + tanA - 1}{( {sec}^{2}A -  {tan}^{2} A) - (secA - tanA) }  \\  \\  =  \frac{secA + tanA - 1}{(secA - tanA)(secA + tanA - 1)}  \\  \\  =  \frac{1}{secA - tanA}

Similar questions