Math, asked by lakshmendpara2005, 11 months ago

prove that:-
 {2}^{30}   +  {2}^{29}  +  {2}^{28} \div  {2}^{31}   +  {2}^{30}  -  {2}^{29}  = 7 \div 10

Answers

Answered by IamIronMan0
2

Step-by-step explanation:

 \frac{ {2}^{30} +  {2}^{29} +  {2}^{28}   }{ {2}^{31}  +  {2}^{30}  -  {2}^{29} }   \\  \\ =  \frac{ {2}^{28}( {2}^{2} + 2 + 1)  }{ {2}^{29} ( {2}^{2} + 2 - 1) }  \\  \\  =  \frac{4 + 2 + 1}{2(4 + 2 - 1)}  \\  \\  =  \frac{7}{10}

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Prove\: that-} \\

   \sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10}

 \bf \underline{Solution-} \\

{~~~~~~:~~~\implies\sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10} }\\

\textsf{Taking 2²⁸ Common }

\\{~~~~~~:~~~\implies\sf\dfrac{  {2}^{28}( {2}^{2} +  {2}^{1}  +  {2}^{0}  )}{  {2}^{28} ({2}^{3} +  {2}^{2}  -  {2}^{1})  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   \cancel{{2}^{28}}( 4 +  2  +  1  )}{   \cancel{{2}^{28} }(8 +  4 -  2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   1 \times   7}{  1(12 - 2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{  7}{  10}  =  \dfrac{7}{10} } \\

\textsf{LHS = RHS}\\

 \bf \underline{Hence\: proved.} \\

Similar questions