Prove that :
Answers
Answered by
14
⭕️Sin6Φ=(sin²Φ)³
Similarly....
⭕️ cos6Φ=(cos²Φ)³
⭕️Now multiply expand (sin²Φ)² and (cos²Φ)²
using the identity (A+B)²=A²+2AB+B²
and simplify...
⭕️you will get answer as 2-3+1 where terms will get cancelled out !
Finally we get 0 as the answer!
hence proved !!!
Similarly....
⭕️ cos6Φ=(cos²Φ)³
⭕️Now multiply expand (sin²Φ)² and (cos²Φ)²
using the identity (A+B)²=A²+2AB+B²
and simplify...
⭕️you will get answer as 2-3+1 where terms will get cancelled out !
Finally we get 0 as the answer!
hence proved !!!
Attachments:
Answered by
16
Answer:
0
Step-by-step explanation:
Given Equation is 2(sin⁶θ + cos⁶θ) - 3(sin⁴θ + cos⁴θ) + 1
⇒ 2[(sin²θ)³ + (cos²θ)³] - 3(sin⁴θ + cos⁴θ) + 1
⇒ 2[(sin²θ + cos²θ)(sin⁴θ - sin²θcos²θ + cos⁴θ) - 3(sin⁴θ + cos⁴θ) + 1
⇒ 2[(1)(sin⁴θ - sin²θcos²θ + cos⁴θ)] - 3(sin⁴θ + cos⁴θ) + 1
⇒ 2(sin⁴θ - sin²θcos²θ + cos⁴θ) - 3(sin⁴θ + cos⁴θ) + 1
⇒ 2sin⁴θ - 2sin²θcos²θ + 2cos⁴θ - 3sin⁴θ - 3cos⁴θ + 1
⇒ -sin⁴θ - 2sin²θcos²θ - cos⁴θ + 1
⇒ -(sin⁴θ + 2sin²θcos²θ + cos⁴θ) + 1
⇒ -(sin²θ + cos²θ)² + 1
⇒ -(1)² + 1
⇒ -1 + 1
⇒ 0.
---------------------------------- Happy New year -------------------------------------
siddhartharao77:
Thank you!
Similar questions
Math,
7 months ago
English,
7 months ago
India Languages,
1 year ago
India Languages,
1 year ago
Math,
1 year ago