Prove that =
Answers
Answered by
0
HELLO DEAR,
(1 + sinθ - cosθ)²/(1 + sinθ + cosθ)²
=> {1 + (sinθ - cosθ)² + 2(sinθ - cosθ)}/{1 + (sinθ + cosθ)² + 2(sinθ + cosθ)}
=> {1 + (sin²θ + cos²θ - 2sinθcosθ) + 2(sinθ - cosθ}/{1 + (sin²θ + cos²θ + 2sinθcosθ) + 2(sinθ + cosθ)}
=> {2 - 2sinθcosθ + 2(sinθ - cosθ)}/{2 + 2sinθcosθ + 2(sinθ + cosθ)}
=> {1 - sinθcosθ + sinθ - cosθ}/{1 + sinθcosθ + sinθ + cosθ}
=> {(1 - cosθ) + sinθ(1 - cosθ)}/{(1 + cosθ) + sinθ(1 + cosθ)}
=> {(1 - cosθ)(sinθ)}/{(1 + cosθ)(sinθ)}
=> (1 - cosθ)/(1 + cosθ)
I HOPE IT'S HELP YOU DEAR,
THANKS
(1 + sinθ - cosθ)²/(1 + sinθ + cosθ)²
=> {1 + (sinθ - cosθ)² + 2(sinθ - cosθ)}/{1 + (sinθ + cosθ)² + 2(sinθ + cosθ)}
=> {1 + (sin²θ + cos²θ - 2sinθcosθ) + 2(sinθ - cosθ}/{1 + (sin²θ + cos²θ + 2sinθcosθ) + 2(sinθ + cosθ)}
=> {2 - 2sinθcosθ + 2(sinθ - cosθ)}/{2 + 2sinθcosθ + 2(sinθ + cosθ)}
=> {1 - sinθcosθ + sinθ - cosθ}/{1 + sinθcosθ + sinθ + cosθ}
=> {(1 - cosθ) + sinθ(1 - cosθ)}/{(1 + cosθ) + sinθ(1 + cosθ)}
=> {(1 - cosθ)(sinθ)}/{(1 + cosθ)(sinθ)}
=> (1 - cosθ)/(1 + cosθ)
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions