Math, asked by Srijita567, 4 months ago

Prove that  \tt \: \dfrac{ {cot}^{2}A }{cosec A - 1}  - 1 = cosec A

Answers

Answered by ResseRaelynn
2

To prove:-

  •  \sf \: \dfrac{ {cot}^{2}A }{cosec A - 1}  - 1 = cosec A

Formula Used:-

  •  \boxed{ \purple{ \bf \:  {cot}^{2}  =  {cosec }^{2} A - 1}}\\\\
  •  \boxed{ \purple{ \bf \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

Proof:-

\sf:\implies LHS

 \sf:\implies\dfrac{ {cot}^{2}A }{cosec A - 1}  - 1

\sf:\implies\dfrac{ {cosec }^{2} A - 1}{cosec A - 1}  - 1

\sf:\implies\dfrac{(cosec A + 1) \:  \:  \cancel{(cosec A - 1)}}{ \cancel{cosec A - 1}}  - 1

\sf:\implies cosec A  \:  +  \: \cancel 1 \:  -  \:  \cancel1

\sf:\implies cosec A

\sf:\implies RHS

  • Hence,Proved

___________________________________________________

Similar questions