Math, asked by nandhanasnambiar, 1 year ago

Prove that the area of an equilateral triangle is equal to √3÷4×a²  where a is the side of the triangle. 

Answers

Answered by ravi34287
0
Length of each side of equilateral triangle = a

Perimeter of equilateral triangle = 3 × a

Let s be the semi-perimeter.



By Heron’s formula,



Answered by Anonymous
11

AnswEr:

Given : An equilateral triangle ABC such that AB = BC = CA = a.

To prove : ar (∆ABC) -

 =  \tt \frac{ \sqrt{3} }{4} \:  \:  {a}^{2}  \\

Construction : Draw AD perpendicular to BC.

Proof : In triangles ABD and ACD, we have

 \qquad \sf \: AB = AC \quad( \therefore \triangle \: ABC \: is \: equialteral) \\ \\   \qquad \sf \angle \: ABD =  \angle \: ACD \quad \: (each \: equal \: to \: 90 \degree) \\  \\  \qquad \sf \: AD = AD \quad(common \: side)

So, by RHS criterion of congruence, we have

 \qquad \sf \triangle \: ABD  \: \cong \: \triangle \: ACD \\  \rightarrow \qquad \sf \: BD = CD \\  \\  \rm \: But -  \:  \:  \:  \sf \: BD + CD = a \\  \\  \implies \sf \: BD = CD =  \frac{a}{2}

Now, in Right triangles ABD, we have

 \qquad \rm  {AB}^{2}  =  {AD}^{2}  +  {BD}^{2}  \\  \\  \rm \rightarrow \qquad \:  {a}^{2}  =  {AD}^{2}  + ( \frac{a}{2})  {}^{2}  \\  \\  \rightarrow \rm {AD}^{2}  =  {a}^{2} -  { \frac{a}{4} }^{2}   \implies \:  {AD}^{2}  =  \frac{ {3a}^{2} }{4}  \\  \\  \rm \rightarrow \: AD =  \frac{ \sqrt{3}a }{2}  \\  \\  \therefore \sf \: ar( \triangle \: ABC) =  \frac{1}{2} (BC \times AD) \\  \\  \sf =  \frac{1}{2} (a \times  \frac{ \sqrt{3} }{2} a) =  \frac{ \sqrt{3} }{4}  {a}^{2}

Attachments:
Similar questions