prove that the diagonal of rhombus bisects the opposite angle
Answers
Answered by
64
Proof . – Let ABCD be a rhombus whose diagonal AC and BD intersect at the point O.
We know that the diagonals of a parallelogram bisect each other.
Also we know that every rhombus is a parallelogram.
Therefore OA=OC and OB=OD.
From triangle(COB) and triangle (COD), we have:
CB=CD sides of rhombus.
CO=CO. Common
OB=OD proved
Therefore tri(COB)~tri(COD) by SSS congruence.
=> But Thus, Hence, the diagonals of a rhombus bisect each other at right angles.
We know that the diagonals of a parallelogram bisect each other.
Also we know that every rhombus is a parallelogram.
Therefore OA=OC and OB=OD.
From triangle(COB) and triangle (COD), we have:
CB=CD sides of rhombus.
CO=CO. Common
OB=OD proved
Therefore tri(COB)~tri(COD) by SSS congruence.
=> But Thus, Hence, the diagonals of a rhombus bisect each other at right angles.
Answered by
10
diagonals of a rhombus bisect each other at right angles.
Step-by-step explanation:
Proof . – Let ABCD be a rhombus whose diagonal AC and BD intersect at the point O.
We know that the diagonals of a parallelogram bisect each other.
Also we know that every rhombus is a parallelogram.
Therefore OA=OC and OB=OD.
From triangle(COB) and triangle (COD), we have:
CB=CD sides of rhombus.
CO=CO. Common
OB=OD proved
Therefore tri(COB)~tri(COD) by SSS congruence.
=> But Thus, Hence, the diagonals of a rhombus bisect each other at right angles.
plz mark me as the brainliest
Attachments:
Similar questions