Math, asked by karthik4297, 1 year ago

Prove that the numbers 49, 4489,444889,................ are obtained by inserting 48 into the middle of the preceding number are square of integers.

Answers

Answered by kvnmurty
12
Let the number N consist of 2m digits.  
     m = 1,  N = 49       m =2    N = 4489       m = 3    N = 444889
It can be written as  
     m = 1,  N-1 = 48       m =2    N-1 = 4488       m = 3    N-1 = 444888

N-1 consists of 2 parts.   44...4  m times ;  88..8  (m) times.

1st part
      10^m * 4 * [ 111...1  m times ]  =  10^m * 4 * (10^m -1) / (10 -1) 
         = 4/9  * 10^m * (10^m - 1)         as we apply sum of GP formula

2nd part =
       8 * [ 1111..  m times] = 8 ( 10^m - 1) / (10 -1) 
       = 8/9  * (10^m - 1)
  
N - 1 = 4/9 * (10^m - 1) [ 10^m + 2 ]

   N = 1 + 4/9 * (10^2m + 2 * 10^m - 10^m - 2)
     N = 1 + 4/9 * 10^2m + 4/9 * 10^m  - 8/9
      N   = 4/9 * 10^2m + 4/9 * 10^m  + 1/9
     
 N = 1/3² * (2 * 10^m + 1)²
 
So N is a square of  A = (2 * 10^m + 1) /3

We have to prove that A is an integer.

     A = [ 2 * (10^m - 1) + 3 ]  /3  =  1 + 2 * (10^m - 1)/3

We know that   10^m - 1 is like 9, 99, 999, 9999.... m times.
     So 10^m - 1 is divisible by 9 and by 3.
 
A = an integer.
So N is q square of an integer = 1 + 2 * (10^m - 1)/ 3 

m = 1,   sq root is 1 + 2 * 3
m = 2    s q root is  1 + 2 * 33 
m = 3                    1 + 2 * 333 ....



kvnmurty: thanx n u r welcom
Answered by Lipsa24
5

so here is your answer

hope it helps you

Attachments:
Similar questions