Prove that the sum of angles of a triangle is two right angles .if angles of a triangle are the ratio 3:4:5, find the smallest angle .
Answers
Answered by
1
Let the three angles be 3x,4x,5x3x,4x,5x degrees then
3x+4x+5x=180∘3x+4x+5x=180∘
12x=180∘12x=180∘
x=180∘12x=180∘12
x=15∘x=15∘
Smallest angle =3x3x
=3×15∘=3×15∘
=45∘=45∘
Greatest angle =5x5x
=5×15∘=5×15∘
=75∘=75∘
In radian ⇒75∘×π180∘⇒75∘×π180∘
⇒5π12⇒5π12 radians.
3x+4x+5x=180∘3x+4x+5x=180∘
12x=180∘12x=180∘
x=180∘12x=180∘12
x=15∘x=15∘
Smallest angle =3x3x
=3×15∘=3×15∘
=45∘=45∘
Greatest angle =5x5x
=5×15∘=5×15∘
=75∘=75∘
In radian ⇒75∘×π180∘⇒75∘×π180∘
⇒5π12⇒5π12 radians.
Similar questions