Math, asked by DONanthony, 1 year ago

prove that x^2+y^2+z^2-xy-yz-zx is always positive

Answers

Answered by JinKazama1
2
We know that,

p (x.y.z)= {x}^{2}  +  {y}^{2}  +  {z}^{2} \\   - xy - yz - zx \\  =  \frac{1}{2} (2 {x}^{2}  + 2 {y}^{2}  + 2 {z}^{2}   \\ - 2xy - 2yz - 2zx) \\  =  \frac{1}{2} ( {x}^{2}   - 2xy +  {y}^{2}  + \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {y}^{2}  - 2yz +  {z}^{2}  +  \\   \:  \:  \:  \:  \:  \: {z}^{2}  - 2zx +  {x}^{2} ) \\  =  \frac{1}{2} ( {(x - y) }^{2}  +  {(y - z)}^{2}  +  \\  {(z - x)}^{2} ) \\
Now, this square terms are always non negative.
P(x,y,z) >=0


Hence, if x is not equal to y not equal to z.
p(x,y,z) is always positive.
Similar questions