Prove the following:
cosec A
___________ = cos A
cot A + tan A
if u know then only answer,,,
I'll mark correct answer as brainliest
Answers
Answered by
4
Answer:
LHS -
[ As, (cos a)^2 + (sin a)^2 = 1 ]
= cos a
Hence proved
Answered by
26
STEP-BY-STEP EXPLANATION:
Given LHS is cosecA/(cotA + tanA) and RHS is cosA. We need to prove that LHS is equal to RHS.
(cosecA)/(cotA + tanA) = cosA
Taking LHS:
→ cosecA/(cotA + tanA)
Using trigonometry formulas:
- cosecA = 1/sinA
- secA = 1/cosA
- cotA = 1/tanA = cosA/sinA
- tanA = sinA/cosA
- sinA = 1/cosecA
- cosA = 1/secA
- sin²A + cos²A = 1
- tan²A + 1 = sec²A
- 1 + cot²A = cosec²A
Substitute the values using above formulas,
→ (1/sinA)/(cosA/sinA + sinA/cosA)
→(1/sinA)/[(cos²A + sin²A)/(sinA cosA)]
→ (1/sinA)/[1/(sinA cosA)]
→ 1/sinA × sinA cosA
→ (sinA cosA)/sinA
→ cosA
From above LHS is cosA and RHS is also cosA. Therefore, LHS is equal to RHS.
Hence, proved.
Similar questions