Math, asked by ys77, 23 hours ago

Prove the following:

cosec A
___________ = cos A
cot A + tan A

if u know then only answer,,,
I'll mark correct answer as brainliest ​

Answers

Answered by abhinavjoshi88
4

Answer:

LHS -

 \frac{ \csc \: a }{ \cot \: a +  \tan \: a  }  \\  =  \frac{ \frac{1}{ \sin \: a } }{ \frac{ \cos \: a }{ \sin \: a }  +  \frac{ \sin \: a }{ \cos \: a } }  \\  =    \frac{1}{ \sin \: a ( \frac{( { \cos \: a) }^{2}  + ( { \sin \: a) }^{2} }{ \sin \: a  \: \cos \: a  }  )}  \\  =  \frac{1}{ \frac{1}{ \cos \: a \:  } }

[ As, (cos a)^2 + (sin a)^2 = 1 ]

= cos a

Hence proved

Answered by Dalfon
26

STEP-BY-STEP EXPLANATION:

Given LHS is cosecA/(cotA + tanA) and RHS is cosA. We need to prove that LHS is equal to RHS.

(cosecA)/(cotA + tanA) = cosA

Taking LHS:

→ cosecA/(cotA + tanA)

Using trigonometry formulas:

  • cosecA = 1/sinA
  • secA = 1/cosA
  • cotA = 1/tanA = cosA/sinA
  • tanA = sinA/cosA
  • sinA = 1/cosecA
  • cosA = 1/secA
  • sin²A + cos²A = 1
  • tan²A + 1 = sec²A
  • 1 + cot²A = cosec²A

Substitute the values using above formulas,

→ (1/sinA)/(cosA/sinA + sinA/cosA)

→(1/sinA)/[(cos²A + sin²A)/(sinA cosA)]

→ (1/sinA)/[1/(sinA cosA)]

→ 1/sinA × sinA cosA

→ (sinA cosA)/sinA

cosA

From above LHS is cosA and RHS is also cosA. Therefore, LHS is equal to RHS.

Hence, proved.

Similar questions