Math, asked by sokomukanya, 1 year ago

prove the following identities

sec 2A + tan 2A =(cos A + sin A)/(cos A - sin A)

Answers

Answered by Anonymous
12
i hope this will help you
Attachments:

sokomukanya: l appreciate your answer
Answered by harendrachoubay
3

\sec 2A + \tan 2A =\dfrac{\cos A + \sin A}{\cos A - \sin A},, proved.

Step-by-step explanation:

To prove, \sec 2A + \tan 2A =\dfrac{\cos A + \sin A}{\cos A - \sin A}.

R.H.S.=\dfrac{\cos A + \sin A}{\cos A - \sin A}

Rationaising numerator and denominator, we get

=\dfrac{\cos A + \sin A}{\cos A - \sin A}\times \dfrac{\cos A + \sin A}{\cos A + \sin A}

=\dfrac{(\cos A + \sin A)^{2} }{\cos^2 A - \sin^2 A}

[ ∵ a^{2} -b^{2} =(a+b)(a-b)]

=\dfrac{\cos^2 A + \sin^2 A+2\cos A\sin A}{\cos 2A}

[ ∵\cos^2 A - \sin^2 A=\cos 2A]

=\dfrac{1+\sin 2A}{\cos 2A}

[ ∵ \sin 2A=2\cos A\sin A and \sin^2 A+\cos^2 A=1]

=\dfrac{1}{\cos 2A} +\dfrac{\sin 2A}{\cos 2A}

=\sec 2A + \tan 2A

=R.H.S., proved.

Hence, \sec 2A + \tan 2A =\dfrac{\cos A + \sin A}{\cos A - \sin A}, proved.

Similar questions