Math, asked by hariomyadav6827, 11 months ago

Prove the following trigonometric identities:
1-sinθ/1+sinθ=(secθ-tanθ)²

Answers

Answered by Anonymous
18

QuesTion :

\large\sf\frac{1 - sin\theta}{1 + sin\theta} = (sec\theta + tan\theta)^2

AnswEr :

\scriptsize\sf{\: \: \: \: \: \:[ \therefore\ \: \pink{Taking \: R.H.S}]}

\normalsize\hookrightarrow\sf\ (sec\theta  - tan\theta)^2

\scriptsize\sf{\: \: \: \: \: \:[ \therefore\ \: \pink{ sec\theta = \frac{1}{cos\theta} \: and \: tan\theta = \frac{sin\theta}{cos\theta} }) }

\normalsize\hookrightarrow\sf\ [\frac{1}{cos\theta} + \frac{cos\theta}{sin\theta}]^2 \\ \\ \normalsize\hookrightarrow\sf\ [\frac{1 - sin\theta}{cos\theta}]^2

\scriptsize\sf{\: \: \: \: \: \:[ \therefore\ \: \pink{ cos^2\theta = 1 - sin^2\theta}] }

\normalsize\hookrightarrow\sf\frac{(1-sin\theta)(1+sin\theta)}{1 - sin^2\theta} \\ \\ \normalsize\hookrightarrow\sf\frac{\cancel{(1 - sin\theta)}(1+sin\theta)}{(1-sin\theta) \cancel{(1-sin\theta)} }

\normalsize\hookrightarrow\sf\frac{1+sin\theta}{1-sin\theta} \\ \\ \normalsize\hookrightarrow\sf\ L.H.S \\ \\ \normalsize\hookrightarrow\sf\ L.H.S = R.H.S

\LARGE\hookrightarrow{\underline{\boxed{\sf\red{Hence \: proved!! }}}}

 \rule{100}2

Some important identities related to it :

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Answered by Anonymous
29

\mathbb{QUESTION}

\frac{1-sin\theta}{1+sin\theta}{=}{(sec\theta-tan)^2}

\mathbb{SOLUTION}

LHS

\frac{1-sin\theta}{1+sin\theta}

\large\frac{1}{cos\theta}{-}\large\frac{sin\theta}{cos\theta}{÷}\large\frac{1}{cos\theta}{+}\large\frac{sin\theta}{cos\theta}

\frac{sec\theta-tan\theta}{sec\theta+tan\theta}

\frac{sec\theta-tan\theta}{sec\theta+tan\theta}×\frac{sec\theta-tan\theta}{sec\theta-tan\theta}

\frac{(sec\theta-tan\theta)^2}{sec^2\theta-tan^2\theta}

{(sec\theta-tan\theta)^2}

= RHS verified

________________________________

\huge\underline\frak\red{note}

Divide both numerator and denominator by cos∅

1/cos∅ = sec∅

sin∅/cos∅ = tan∅

Rationalize

sec² - tan² = 1

(a+b)(a-b) = -b²

[used in this proven]

Similar questions