Math, asked by rekhadixit6161, 10 months ago

Prove the following trigonometric identities:
(1+tan²θ)(1-sinθ)(1+sinθ)=1

Answers

Answered by Anonymous
28

QuesTion :

\normalsize\sf\ (1 + tan^2\theta)(1 - sin\theta)(1+sin\theta) = 1

 \rule{100}2

AnswEr :

\underline{\bigstar\:\textsf{According \: to \: given \: in \: the \: question:}}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{Taking \: L.H.S}) }

\normalsize\hookrightarrow\sf\ (1 + tan^2\theta) \underbrace{(1 - sin\theta)(1 + sin\theta)}_{\orange{Multiplying \: both} \: }

\scriptsize\sf{\: \: \: \: \: \:[\therefore\ \:  \pink{sin^2\theta + cos^2\theta = 1}]}

\normalsize\hookrightarrow\sf\ (1 + Tan^2\theta)(1 - sin^2\theta)

\scriptsize\sf{\: \: \: \: \: \:[\therefore\ \:  \pink{ 1 +Tan^2\theta =  cosec^2\theta \: and \: 1 - cos^2\theta = sin^2\theta}] }

\normalsize\hookrightarrow\sf\ (sec^2\theta)(cos^2\theta)

\scriptsize\sf{\: \: \: \: \: \:[\therefore\ \:  \pink{ sec\theta = \frac{1}{cos\theta}}] }

\normalsize\hookrightarrow\sf\frac{1}{\cancel{cos^2\theta}} \times\ \cancel{cos^2\theta} \\ \\ \normalsize\hookrightarrow\sf\  1 \: = \: R.H.S \\ \\ \normalsize\hookrightarrow\sf\ L.H.S \: = \: R.H.S

\LARGE\hookrightarrow{\underline{\boxed{\sf\green{Hence \: proved!! \:}}}}

 \rule{100}2

Some important identities related to it :

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Answered by Anonymous
32

Answer:

1

Step-by-step explanation:

Given :

{\sf{\ \ (1 + tan^2 \theta )(1 - sin \theta )(1 + sin \theta )}}

___________________________

{\boxed{\sf{\red{Identity \ : \ 1 + tan^2 \theta = sec^2 \theta }}}}

___________________________

\Rightarrow{\sf{(sec^2 \theta )(1 - sin \theta)(1 + sin \theta)}}

___________________________

{\boxed{\sf{\red{Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}}

{\sf{\red{Here, \ a = 1, \ b = sin \theta}}}

___________________________

\Rightarrow{\sf{ (sec^2 \theta) [ (1)^2 - (sin \theta)^2 ] }}

___________________________

\Rightarrow{\sf{(sec^2 \theta)(1 - sin^2 \theta)}}

___________________________

{\boxed{\sf{\red{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}}

{\sf{\red{From \ this, \ we \ get \ [cos^2 \theta = 1 - sin^2 \theta] }}}

___________________________

\Rightarrow{\sf{(sec^2 \theta)(cos^2 \theta)}}

__________________________

{\boxed{\sf{\red{Identity \ : \ sec^2 \theta = {\dfrac{1}{cos^2 \theta}} }}}}

__________________________

\Rightarrow{\sf{ \left( {\dfrac{1}{cos^2 \theta}} \right) (cos^2 \theta)}}

__________________________

\Rightarrow{\sf{ {\dfrac{1}{cos^2 \theta}} \times cos^2 \theta}}

___________________________

\Rightarrow{\sf{ {\dfrac{1}{{\cancel{cos^2 \theta}}}} \times {\cancel{cos^2 \theta}}}}

___________________________

\Rightarrow{\boxed{\sf{\green{1}}}}

Similar questions