Prove the following trigonometric identities:
(cosecA-sinA)(secA-cosA)(tanA+cotA)=1
Answers
Step-by-step explanation:
bhai comment pe thanks bol dens
Step-by-step explanation:
To prove --->
(CosecA - SinA) (SecA - CosA) (tanA + CotA ) = 1
Proof----> We know that,
CosecA = 1 / SinA
SecA = 1 / CosA
First we solve first bracket of LHS
( CosecA - SinA ) = ( 1 / SinA - SinA )
= ( 1 - Sin²A ) / SinA
We know that, 1 - Sin²A = Cos²A , applying it , we get
= Cos²A / SinA
Now we solve second bracket,
( SecA - CosA ) = ( 1 / CosA - CosA )
= ( 1 - Cos²A ) / CosA
We know that, 1 - Cos²A = Sin²A , applying it we get,
= Sin²A / CosA
Now we solve third bracket,
( tanA + CotA ) = ( SinA / CosA + CosA / SinA )
= ( Sin²A + Cos²A ) / SinA CosA
We know that , Sin²θ + Cos²θ = 1 , we get,
= 1 / SinA CosA
Now taking LHS ,
(CosecA - SinA) ( SecA - CosA) ( tanA + CotA)
Putting values of all brackets , we get ,
= (Cos²A / SinA) ( Sin²A / CosA) ( 1 / SinA CosA )
= Cos²A Sin²A / Cos²A Sin²A
= 1 = RHS