Prove the following trigonometric identities:
secA(1-sinA)(secA+tanA)=1
Answers
Step-by-step explanation:
To Prove : sec A(1 - sin A)(sec A + tan A) = 1
Proof :
L.H.S. = sec A(1 - sin A)(sec A + tan A)
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
________________________________
= R.H.S.
Hence, proved !!
Prove the following trigonometric identities:
secA(1-sinA)(secA+tanA)=1
we know,
(a + b)(a – b) = a² – b²
Now,
Converting everything to sinA and cosA;
=> (1/cosA)(1-sinA)(1/cosA+sinA/cosA)
Solving;
=>{ ( 1-sinA ) / cosA }{ (1+sinA)/cosA) }
- Multiplying both the brackets
=>(1-sin²A)/cos²A
Since
Sin²A+cos²A=1
so,
cos²A=1-sin²A
=> cos²A/cos²A
=1
hence, LHS= RHSThus Prove