Math, asked by lariya9902, 10 months ago

Prove the following trigonometric identities:
cosecθ√1-cos²θ=1

Answers

Answered by Anonymous
11

Step-by-step explanation:

To Prove : {\sf{\ \ cosec \theta {\sqrt{1 - cos^2 \theta}} = 1}}

L.H.S. = {\sf{\ cosec \theta {\sqrt{1 - cos^2 \theta}}}}

_____________________________

{\boxed{\sf{\red{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}}

{\sf{\red{From \ this, \ we \ get \ sin^2 \theta = 1 - cos^2 \theta}}}

_____________________________

\Rightarrow{\sf{cosec \theta {\sqrt{sin^2 \theta}}}}

_____________________________

We can write this as :

\Rightarrow{\sf{cosec \theta {\sqrt{(sin \theta)^2}}}}

_____________________________

If we remove a square root from a number, then the number is raised to the power of 1/2.

\Rightarrow{\sf{cosec \theta \times [ (sin \theta)^2 ] ^{\frac{1}{2}} }}

_____________________________

{\boxed{\sf{\red{Identity \ : \ (a^m)^n = (a)^{mn} }}}}

_____________________________

\Rightarrow{\sf{cosec \theta \times (sin \theta)^{2 \times {\frac{2}{2}} } }}

_____________________________

\Rightarrow{\sf{cosec \theta \times sin \theta}}

_____________________________

{\boxed{\sf{\red{Identity \ : \ cosec \theta = {\dfrac{1}{sin \theta}} }}}}

_____________________________

\Rightarrow{\sf{ {\dfrac{1}{sin \theta}} \times sin \theta}}

_____________________________

\Rightarrow{\boxed{\sf{\green{1}}}}

_____________________________

= R.H.S.

Hence, proved !!

Answered by Anonymous
4

Answer :

To prove :

cosec \alpha  \sqrt{1 -  {cos}^{2}  \alpha }  = 1

Proof :

L. H. S

cosec \alpha  \sqrt{1 -  {cos}^{2} \alpha  }

As the Trigonometric identity,

Sin ² a + cos ² a =1

Sin ² a = 1- cos ² a

Therfore by using this identity,

 =  > cosec \alpha  \sqrt{ {sin}^{2}  \alpha }

 =  > cosec \alpha  \times sin \alpha

as \: cosec \:  \alpha  =  \frac{1}{sin \:  \alpha }

So,

 =  >  \frac{1}{sin \alpha }  \times sin \alpha

 =  >  \: 1

As R. H. S =1.

Therefore L. H. S=R. H. S.

Hence proved.

Similar questions