Math, asked by sandhumanveer3596, 9 months ago

Prove the following trigonometric identities:
cotθ-tanθ=2cos²θ-1/sinθcosθ

Answers

Answered by AnkitaSahni
2

To Prove :

cotθ-tanθ=2cos²θ-1/sinθcosθ

• Using LHS ,

cotθ-tanθ = cosθ/sinθ- sinθ/cosθ

• Taking LCM ,

(cos²θ-sin²θ)/sinθcosθ

• putting sin²θ= 1- cos²θ

LHS = [cos²θ-(1-cos²θ)]/sinθcosθ

=2cos²θ-1/sinθcosθ

= RHS

hence proved

Answered by DeenaMathew
0
  • cotθ-tanθ=2cos²θ-1/sinθcosθ
  • L.H.S. = cotθ-tanθ
  • using the formula, cotθ=cosθ/sinθ and tanθ=sinθ/cosθ we get,
  • L.H.S.= cosθ/sinθ-sinθ/cosθ
  • L.C.M. of the above is sinθcosθ,
  • =(cos²θ-sin²θ)/sinθcosθ
  • using the identity, sin²θ+cos²θ=1 and cos²θ=1-sin²θ, we get,
  • L.H.S.= cos²θ-(1-cos²θ)/sinθcosθ
  • L.H.S.=2cos²θ-1/sinθcosθ=R.H.S.
Similar questions