Prove the following trigonometric identities:
cotθ-tanθ=2cos²θ-1/sinθcosθ
Answers
Answered by
2
To Prove :
cotθ-tanθ=2cos²θ-1/sinθcosθ
• Using LHS ,
cotθ-tanθ = cosθ/sinθ- sinθ/cosθ
• Taking LCM ,
(cos²θ-sin²θ)/sinθcosθ
• putting sin²θ= 1- cos²θ
LHS = [cos²θ-(1-cos²θ)]/sinθcosθ
=2cos²θ-1/sinθcosθ
= RHS
hence proved
Answered by
0
- cotθ-tanθ=2cos²θ-1/sinθcosθ
- L.H.S. = cotθ-tanθ
- using the formula, cotθ=cosθ/sinθ and tanθ=sinθ/cosθ we get,
- L.H.S.= cosθ/sinθ-sinθ/cosθ
- L.C.M. of the above is sinθcosθ,
- =(cos²θ-sin²θ)/sinθcosθ
- using the identity, sin²θ+cos²θ=1 and cos²θ=1-sin²θ, we get,
- L.H.S.= cos²θ-(1-cos²θ)/sinθcosθ
- L.H.S.=2cos²θ-1/sinθcosθ=R.H.S.
Similar questions
Math,
5 months ago
Science,
5 months ago
Computer Science,
5 months ago
India Languages,
9 months ago
Math,
1 year ago