Math, asked by aimone2934, 11 months ago

Prove the following trigonometric identities:
tanθ-cotθ=2sin²θ-1/sinθcosθ

Answers

Answered by harendrachoubay
1

\tan \theta-\cot \theta=\dfrac{2\sin^2 \theta-1}{\sin \theta\cos \theta}, proved.

Step-by-step explanation:

To prove that the given trigonometric identities:

\tan \theta-\cot \theta=\dfrac{2\sin^2 \theta-1}{\sin \theta\cos \theta}

L.H.S. = \tan \theta-\cot \theta

Using the trigonometric identities,

\tan \theta=\dfrac{\sin \theta}{\cos \theta} and \cot \theta=\dfrac{\cos \theta}{\sin \theta}

= \dfrac{\sin \theta}{\cos \theta}-\dfrac{\cos \theta}{\sin \theta}

Taking LCM of numerator part, we get

= \dfrac{\sin^2 \theta-\cos^2 \theta}{\sin \theta\cos \theta}

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta = 1

\cos^2 \theta=1-\sin^2 \theta = 1

= \dfrac{\sin^2 \theta-(1-\sin^2 \theta)}{\sin \theta\cos \theta}

= \dfrac{\sin^2 \theta-1+\sin^2 \theta}{\sin \theta\cos \theta}

= \dfrac{2\sin^2 \theta-1}{\sin \theta\cos \theta}

= R.H.S., proved.

Thus, \tan \theta-\cot \theta=\dfrac{2\sin^2 \theta-1}{\sin \theta\cos \theta}, proved.

Similar questions