Math, asked by mithunjohn6153, 11 months ago

Prove the following trigonometric identities:
cot²A(secA-1)/1+sinA=sec²A(1-sinA/1+secA)

Answers

Answered by topwriters
0

cot²A ( sec A - 1/ 1 + sin A) - sec²A (sin A - 1 / 1 + secA) = 0  proved

Step-by-step explanation:

To prove: cot²A( secA - 1) / 1+ sinA = sec²A ( 1- sinA / 1+ secA) or

cot²A ( secA-1/ 1+sinA) - sec²A (sinA-1 / 1+secA) = 0

Proof:

LHS = cot²A ( secA-1/ 1+sinA) + sec²A (sinA-1 / 1+secA)  

 = cot²A (SecA - 1) (1 -SinA) / (1-Sin²A) + Sec²A (SinA - 1) (SecA - 1) /(Sec²A - 1)

 =  Cot²A (SecA - SinA. SecA -1 + SinA) / Cos²A +  Sec²A (SinA. SecA - SecA - SinA + 1)/ Tan²A

 = 1/Sin²A (SecA - SinA. SecA -1 + SinA) + 1/Sin²A (SinA. SecA - SecA - SinA + 1)

 = 0/Sin²A  

 = 0

 = RHS

RHS = LHS

Hence proved.

Similar questions