Math, asked by Siyakashyap4462, 11 months ago

Prove the following trigonometric identities:
tanA/(1+tan²A)²+cot²A/(1+cot²A)²=sinAcosA

Answers

Answered by topwriters
1

tanA / (1+tan²A)² + cotA / (1+cot² A)² = sinA .cosA  proved

Step-by-step explanation:

To prove: tanA /(1+tan²A)² +cotA / (1+cot²A)² = sinA .cosA

Proof:

We know Sec²θ  =  1 +  Tan²θ and Cosec²θ  =  1 + Cot²θ

LHS = tanA /(1+tan²A)² + cotA/(1+cot²A)²

 = tan A / (Sec²A)² + cotA / (Cosec²θ)²

 = SinA/CosA / 1/(Cos²A)² + CosA/SinA / 1/(Sin²A)²

 = SinA.CosA.cos²A + CosA.SinA.Sin²A

 = SinA.CosA (Sin²A + Cos²A)

 = SinA.CosA

 = RHS

RHS = LHS

Hence proved.

Similar questions