Prove the following trigonometric identities:
(1+cotA+tanA)(sinA-cosA)=secA/cosec²A-cosecA/sec²A=sinAtanA-cotAcosA
Answers
we have to prove that,
(1 + cotA + tanA)(sinA - cosA) = secA/cosec²A -cosecA/sec²A = sinA.tanA - cotA.cosA
secA/cosec²A - cosecA/sec²A
= (1/cosA)/(1/sin²A) - (1/sinA)/(1/cos²A)
= sin²A/cosA - cos²A/sinA
= (sin³A - cos³A)/sinA.cosA
= (sinA - cosA)(sin²A + cos²A + sinA.cosA)/sinA.cosA
= (sinA - cosA)[sin²A/sinA.cosA + cos²A/sinA.cosA + sinA.cosA/sinA.cosA]
= (sinA - cosA)(tanA +cotA + 1) ...........(1)
again, secA/cosec²A - cosecA/sec²A
= sin²A/cosA - cos²A/sinA
= (sinA/cosA)sinA - (cosA/sinA)cosA
= tanA.sinA - cotA.cosA ........(2)
from equations (1) and (2) we get,
(1 + cotA + tanA)(sinA - cosA) = secA/cosec²A -cosecA/sec²A = sinA.tanA - cotA.cosA
[ hence proved ]
also read similar questions : Prove the following trigonometric identities:
(cosecA-sinA)(secA-cosA)(tanA+cotA)=1
https://brainly.in/question/15922238
Prove the identity (sinA + cosA) (tanA + cotA) = secA + CosecA
https://brainly.in/question/1309982
Thanx for 15 points in the world and the world is