★ PROVE THE IDENTITY ★
1-sinΦ/1+sinΦ = (secΦ -tan Φ) ^2
★ CONTENT QUALITY SUPPORT REQUIRED ★
Answers
Answered by
7
L.H.S
1-sin∅/1+sin∅
♪ Multiplying And Dividing By 1-sin∅ ♪
= 1-sin∅/1+sin∅×1-sin∅/1-sin∅
= (1-sin∅)²/1-sin²∅
= (1-sin∅)²/cos²∅
= (1-sin∅/cos∅)²
= (1/cos∅-sin∅/cos∅)²
= (sec∅-tan∅)²
= R.H.S
hence L.H.S = R.H.S
1-sin∅/1+sin∅
♪ Multiplying And Dividing By 1-sin∅ ♪
= 1-sin∅/1+sin∅×1-sin∅/1-sin∅
= (1-sin∅)²/1-sin²∅
= (1-sin∅)²/cos²∅
= (1-sin∅/cos∅)²
= (1/cos∅-sin∅/cos∅)²
= (sec∅-tan∅)²
= R.H.S
hence L.H.S = R.H.S
Answered by
12
Hey there!
LHS = 1-sinΦ/ 1+sinΦ
= 1-sinΦ/ 1+sinΦ * 1-sinΦ /1-sinΦ
=( 1-sinΦ)^2 / 1-sin^2 Φ
= (1- sin^2Φ )/ cos^2Φ
=( 1-sinΦ/cosΦ)^2
= [ 1/cosΦ -sinΦ/cosΦ ] ^ 2
= (secΦ -tanΦ)^2 = RHS
Hence proved!
#hope it helps!
LHS = 1-sinΦ/ 1+sinΦ
= 1-sinΦ/ 1+sinΦ * 1-sinΦ /1-sinΦ
=( 1-sinΦ)^2 / 1-sin^2 Φ
= (1- sin^2Φ )/ cos^2Φ
=( 1-sinΦ/cosΦ)^2
= [ 1/cosΦ -sinΦ/cosΦ ] ^ 2
= (secΦ -tanΦ)^2 = RHS
Hence proved!
#hope it helps!
Anonymous:
★ CONTENT QUALITY SUPPORT ★
Similar questions