prove the
please answer me
Attachments:
Answers
Answered by
3
heya friend____ ✋✋
here's your answer ____⏩⏩⏩
_______________________________
1 answer · Mathematics
Best Answer
Do you know this identity:
sin(a - b) = sin(a).cos(b) - cos(a).sin(b)
sin(30 - 11) = sin(30).cos(11) - cos(30).sin(11)
sin(19) = (1/2).cos(11) - [(√3)/2].sin(11)
sin(19) + cos(11) = (1/2).cos(11) - [(√3)/2].sin(11) + cos(11)
sin(19) + cos(11) = (3/2).cos(11) - [(√3)/2].sin(11)
sin(19) + cos(11) = (1/2).[3.cos(11) - √3.sin(11)] ← memorise this result as (1)
Do you know this identity:
cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
cos(30 - 11) = cos(30).cos(11) + sin(30).sin(11)
cos(19) = [(√3)/2].cos(11) + (1/2).sin(11)
cos(19) - sin(11) = [(√3)/2].cos(11) + (1/2).sin(11) - sin(11)
cos(19) - sin(11) = [(√3)/2].cos(11) - (1/2).sin(11)
cos(19) - sin(11) = (1/2).[√3.cos(11) - sin(11)] ← memorise this result as (2)
= [sin(19) + cos(11)] / [cos(19) - sin(11)] → recall (1)
= { (1/2).[3.cos(11) - √3.sin(11)] } / [cos(19) - sin(11)] → recall (2)
= { (1/2).[3.cos(11) - √3.sin(11)] } / { (1/2).[√3.cos(11) - sin(11)] } → you can simplify by (1/2)
= [3.cos(11) - √3.sin(11)] / [√3.cos(11) - sin(11)] → you factorize (√3) at the numerator
= (√3).[√3.cos(11) - sin(11)] / [√3.cos(11) - sin(11)] → you simplify
= √3
_________________________________
✌hope it helps u ✌
✅✅if u r satisfied with my answer please mark it as BRAINLIEST ✅✅
here's your answer ____⏩⏩⏩
_______________________________
1 answer · Mathematics
Best Answer
Do you know this identity:
sin(a - b) = sin(a).cos(b) - cos(a).sin(b)
sin(30 - 11) = sin(30).cos(11) - cos(30).sin(11)
sin(19) = (1/2).cos(11) - [(√3)/2].sin(11)
sin(19) + cos(11) = (1/2).cos(11) - [(√3)/2].sin(11) + cos(11)
sin(19) + cos(11) = (3/2).cos(11) - [(√3)/2].sin(11)
sin(19) + cos(11) = (1/2).[3.cos(11) - √3.sin(11)] ← memorise this result as (1)
Do you know this identity:
cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
cos(30 - 11) = cos(30).cos(11) + sin(30).sin(11)
cos(19) = [(√3)/2].cos(11) + (1/2).sin(11)
cos(19) - sin(11) = [(√3)/2].cos(11) + (1/2).sin(11) - sin(11)
cos(19) - sin(11) = [(√3)/2].cos(11) - (1/2).sin(11)
cos(19) - sin(11) = (1/2).[√3.cos(11) - sin(11)] ← memorise this result as (2)
= [sin(19) + cos(11)] / [cos(19) - sin(11)] → recall (1)
= { (1/2).[3.cos(11) - √3.sin(11)] } / [cos(19) - sin(11)] → recall (2)
= { (1/2).[3.cos(11) - √3.sin(11)] } / { (1/2).[√3.cos(11) - sin(11)] } → you can simplify by (1/2)
= [3.cos(11) - √3.sin(11)] / [√3.cos(11) - sin(11)] → you factorize (√3) at the numerator
= (√3).[√3.cos(11) - sin(11)] / [√3.cos(11) - sin(11)] → you simplify
= √3
_________________________________
✌hope it helps u ✌
✅✅if u r satisfied with my answer please mark it as BRAINLIEST ✅✅
Similar questions
Business Studies,
7 months ago
Social Sciences,
7 months ago
Hindi,
1 year ago
Math,
1 year ago
Hindi,
1 year ago