Prove this using PMI for all n element of N:1^3+2^3^3+.............+n^3=(n(n+1)÷2)^2
Answers
Answered by
3
:
Base case: n=1
L.H.S:13=1
R.H.S:(1)2=1
Therefore it's true for n=1.
I.H.: Assume that, for some k∈N, 13+23+...+k3=(1+2+...+k)2.
Want to show that 13+23+...+(k+1)3=(1+2+...+(k+1))2
13+23+...+(k+1)3
=13+23+...+k3+(k+1)3
=(1+2+...+k)2+(k+1)3 by I.H.
Annnnd I'm stuck. Not sure how to proceed from here on.
Answered by
0
Answer:
Prove this using PMI for all n element of N:1^3+2^3^3+.............+n^3=(n(n+1)÷2)^2
Similar questions