Math, asked by viranderbishnoi2268, 5 months ago

Q.12
+4
If the sides of a rhombus are 12 cm
and one of its diagonals is 16 cm
then find the area of the rhombus.​

Answers

Answered by itzmesweety
5

Answer:

Rhombus

Solve for area

A≈143.11cm²

a Side

12

cm

p Diagonal

16

cm

Answered by ᏞovingHeart
31

Answer:

Given :-

side of a Rhombus =12cm

Length of one diagonal =16cm

To find:-

Area of Rhombus

Solution:-

Let the other diagonal be x

As we know that in a Rhombus

\boxed{\sf Side=\dfrac {\sqrt {d_1 {}^2+d_2 {}^2}}{2}}

  • Substitute the values

\qquad\qquad\displaystyle {:}\longrightarrow 12=\dfrac {\sqrt {16^2+x^2}}{2}

\qquad\qquad\displaystyle {:}\longrightarrow 12×2={\sqrt {256+x^2}}

\qquad\qquad\displaystyle {:}\longrightarrow 24=\sqrt{256+x^2}

\qquad\qquad\displaystyle {:}\longrightarrow 256+x^2=\sqrt {24}

\qquad\qquad\displaystyle {:}\longrightarrow x^2=\sqrt {24}-256

\qquad\qquad\displaystyle {:}\longrightarrow x^2=256-4.8

\qquad\qquad\displaystyle {:}\longrightarrow x^2=251.2

\qquad\qquad\displaystyle {:}\longrightarrow x=\sqrt {251.2}

\qquad\qquad\displaystyle {:}\longrightarrow x=15.8

  • The other diagonal is 15.8 cm

Now ,

We know that in a Rhombus

\boxed {\sf Area_{(Rhombus)}=\dfrac {1}{2}×d_1×d_2}

  • Substitute the values

\qquad\qquad\displaystyle {:}\longrightarrow Area_{(Rhombus)}=\dfrac {1}{\cancel {2}}×\cancel {16}×15.8

\qquad\qquad\displaystyle {:}\longrightarrow Area_{(Rhombus)}=8×15.8

\qquad\qquad\displaystyle {:}\longrightarrow Area_{(Rhombus)}=126.4cm^2

\\\\\therefore\underline{\underline{\sf The\;area\;of\:the\;Rhombus\:is\:126.4cm^2.}}

Similar questions