Math, asked by piyushguptaraj316, 4 months ago

Q.4 Find the zeros of the given polynomial and verify the relationship between the zeros and their coefficients. qquad P(x)=x^(2)+4sqrt(3)x-15.(2marks)​

Answers

Answered by sweetlinsweety
0

P(x)=x²+4✓3x-15.

P(x)=(x-✓3)(x+5✓3)

P(x)=0

•°• x=✓3,x= -5✓3

The Zeroes are ✓3, -5✓3

Sum of Zeroes=✓3+(-5✓3) =-6.9

by the definition

Sum of Zeroes= -coefficient of x/coefficient of x²

= -4✓3 =-6.9

Product of Zeroes=✓3 x -5✓3 = -15

by the definition

Product of Zeroes=constant term/coefficient of x²

=-15

Hence Verified

Answered by Anonymous
10

 \bf  \LARGE\color{pink}Hola!

GiveN :

 \sf \mapsto \: p(x) =  {x}^{2}  + 4 \sqrt{3} \:  x \:  - 15

To FinD :

 \mapsto \sf \: zeros \:  \:  of  \:  \: the \:  \:  given  \: polynomial

 \sf  \mapsto \: Relation \:  \:  between   \:  \: coefficients  \:  and\: Zeros

SolutioN :

 \sf \mapsto \: p(x) =  {x}^{2}  + 4 \sqrt{3} x - 15

 \sf \:  \:  \:  \: For \:  \:  it  \:  \: to  \:  \: be  \:  \: zero

 \tt  \star \:  \:  \: \underline  {Zeros} :

 \sf \implies \:    {x}^{2}  + 4 \sqrt{3} x - 15 = 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt  {\tt { \underline{ \boxed{ \tt{ \: x =  \frac{ - b   ± \sqrt{ {b}^{2} - 4ac } }{2a} }}}}} \:  \:  \:  \:  \bf[ Formula ]

 \implies \sf \: x =  \frac{ - 4 \sqrt{3} ± \sqrt{48 + 60} }{2}  \\

 \implies \sf \: x = - 2\sqrt{3}  ±  \sqrt{27}   \\

  \:  \:  \:  \:  \:  \:  \: \therefore { \underline{ \boxed{ \sf \: x = (- 2\sqrt{3}   +   \sqrt{27}) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = ( - 2 \sqrt{3}  +  \sqrt{27}) }}}   \\

_______________________

 \star \:  \:  \:   \: \tt \underline{Relation \:  \:  between   \:  \: coefficients  \: and \: Zeros} :

let, ax²-bx+c=0 is a quadratic equations

 \sf \: We  \:  \: know \:  \:  for \:  \:  any \:  \:  quadratic  \:  \: equation,

 \mapsto \:  \:  \:  \:  \sf  \underline{\underline{ sum \:  \: of \:  \: roots =  -  \frac{b}{a} }} \\

 \mapsto \:  \:  \:  \:  \sf  \underline{\underline{ product \:  \: of \:  \: roots =  -  \frac{c}{a} }} \\

_______________________

HOPE THIS IS HELPFUL...

Similar questions